

Getting Started with the TWS Java API
November 2013
Supports TWS API Release 9.69

© 2013 Interactive Brokers LLC. All rights reserved.

Sun, Sun Microsystems, the Sun Logo and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. Excel,
Windows and Visual Basic (VB) are trademarks or registered trademarks of the
Microsoft Corporation in the United States and/or in other countries.

Any symbols displayed within these pages are for illustrative purposes only, and are not
intended to portray any recommendation.

Contents

1 Introduction ...7

How to Use this Book ...8

Organization ..8

Part 1: Introducing the TWS Java API ..8

Part 2: Preparing to Use the TWS Java API ...8

Part 3: Getting to Know the Java Test Client ...9

Part 4: Where to Go from Here..9

Footnotes and References ..9

Icons .. 10

Document Conventions.. 11

2 TWS and the Java API ..13

Chapter 1 - What is Trader Workstation?... 14

What Can You Do with TWS? .. 16

A Quick Look at TWS... 16

The TWS Quote Monitor ... 16

The Order Ticket ... 16

Real-Time Account Monitoring ... 17

Chapter 2 - Why Use the TWS Java API?... 18

TWS and the API .. 18

Available API Technologies ... 19

An Example ... 19

3 Preparing to Use the Java API ..21

Chapter 3 - Download the Java JDK and IDE.. 22

Chapter 4- Download the API Software ... 23

Chapter 5 - Connect to the Java Test Client... 27

Set Up the Java Test Client .. 27

4 Market Data..31

Chapter 6 - Connect the Java Test Client to TWS ... 32
Getting Started with the TWS Java API i

Contents
Java API Basic Framework ... 32

Log Into TWS ... 33

About Logging In... 33

Enable the API Connection through TWS .. 35

Connect to TWS.. 36

What Happens When I Click Connect? .. 38

Disconnecting from a Running Instance of TWS .. 38

Chapter 7: Requesting and Canceling Market Data ... 40

What Happens When I Click the Request Top Market Data Link?........................ 41

The reqMktData() Method... 42

EWrapper Methods that Return Market Data.. 44

Getting Frozen Market Data.. 46

Getting a Snapshot of Market Data.. 47

Canceling Market Data... 47

Chapter 8 - Requesting and Canceling Market Depth .. 49

What Happens When I Click the Request Deep Market Data Link?...................... 50

The reqMktDepth() Method... 50

The updateMktDepth() and updateMktDepthL2() Methods......................... 52

Canceling Market Depth... 52

Chapter 9 - Requesting and Canceling Historical Data ... 53

What Happens When I Click the Historical Data Link? 54

The reqHistoricalData() Method ... 54

The historicalData() Method.. 56

Canceling Historical Data ... 57

Chapter 10 - Requesting and Canceling Real Time Bars... 58

What Happens When I Click the Request real-time bars Link? 59

The reqRealTimeBars() Method ... 59

The realtimeBar() Method... 60

Canceling Real Time Bars... 60

Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions 61

What Happens When I Subscribe to a Market Scanner?.................................... 62

The scannerData() Method ... 63

The scannerDataEnd() Method .. 63

The reqScannerParameters() Method ... 64

Cancel Methods .. 64

Chapter 12: Requesting Contract Data.. 65
Getting Started with the TWS Java API ii

Contents
What Happens When I Request Contract Data? .. 65

The reqContractDetails() Method ... 66

The contractDetails() Method .. 67

5 Options...69

Chapter 13: Viewing Option Chains .. 70

What Happens When I Submit a Request to View Option Chains? 70

The reqMktData() Method... 71

EWrapper Methods that Return Market Data.. 72

Chapter 14: Exercising Options.. 74

What Happens When I Exercise an Option or Let an Option Lapse? 74

The exerciseOptions() Method... 75

6 Orders and Executions..77

Chapter 15: Placing and Canceling an Order .. 78

What Happens When I Place an Order? .. 80

The placeOrder() Method.. 81

The orderStatus() Method .. 83

Order IDs .. 83

Modifying an Order ... 84

Attaching an Order to an Existing Order... 85

Checking Post-Trade Margin Requirements ... 86

Canceling an Order ... 87

Chapter 16: Extended Order Attributes ... 88

Misc .. 88

Advisor .. 88

Volatility .. 89

Scale ... 90

IB Algo .. 91

7 Account and Portfolio Information ...93

Chapter 17: Retrieving Account and Portfolio Information...................................... 94

What Happens When I Retrieve My Account Information?................................. 95

The reqAccountUpdates() Method .. 95

Desubscribing ... 96
Getting Started with the TWS Java API iii

Contents
8 Where to Go from Here...99

Chapter 25 - Additional Resources ... 100

Help with Java Programming .. 100

Help with the Java API... 100

The API Reference Guide ... 100

The API Beta and API Production Release Notes..................................... 101

The TWS API Webinars... 101

API Bulletin Board ... 101

IB Customer Service .. 101

IB Features Poll... 101
Getting Started with the TWS Java API iv

1
Introduction

You might be looking at this book for any number of reasons, including:

• You love IB's TWS, and are interested in seeing how using its API can enhance your
trading.

• You use another online trading application that doesn't provide the functionality of TWS,
and you want to find out more about TWS and its API capabilities.

• You never suspected that there was a link between the worlds of trading/financial
management and computer programming, and the hint of that possibility has piqued
your interest.

Or more likely you have a reason of your own. Regardless of your original motivation, you now
hold in your hands a unique and potentially priceless tome of information. Well, maybe that's
a tiny bit of an exaggeration. However, the information in this book, which will teach you how
to access and manage the robust functionality of IB's Trader Workstation through our TWS
Java API, could open up a whole new world of possibilities and completely change the way you
manage your trading environment. Keep reading to find out how easy it can be to build your
own customized trading application.

If you are a Financial Advisor who trades for and allocates shares
among multiple client accounts and would like more information
about using the Java API, see the Getting Started with the TWS
Java API for Advisors Guide.
Getting Started with the TWS Java API 7

Introduction
How to Use this Book
How to Use this Book
Before you get started, you should read this section to learn how this book is organized, and
see which graphical conventions are used throughout.

Our main goal is to give active traders and investors the tools they need to successfully
implement a custom trading application (i.e. a trading system that you can customize to meet
your specific needs), and that doesn't have to be monitored every second of the day. If you're
not a trader or investor you probably won't have much use for this book, but please, feel free
to read on anyway!

Throughout this book, we use the acronym “TWS” in place of “Trader
Workstation.” So when you see “TWS” anywhere, you’ll know we’re
talking about Trader Workstation.

Before you read any further, we need to tell you that this book
focuses on the TWS side of the Java API - we don't really help you to
learn Java. If you aren't a fairly proficient Java programmer, or at
least a very confident and bold beginner, this may be more than you

want to take on. We suggest you start with a beginner's Java programming
book, and come back to us when you're comfortable with Java.

Organization
We’ve divided this book into five major sections, each of which comprises a number of smaller
subsections, and each of those have even smaller groupings of paragraphs and figures…well,
you get the picture. Here’s how we’ve broken things down:

Part 1: Introducing the TWS Java API

The chapters in this section help you answer those important questions you need to ask before
you can proceed - questions such as "What can TWS do for me?" and "Why would I use an
API?" and "If I WERE to use an API, what does the Java platform have to offer me?" and even
"What other API choices do I have?"

If you already know you want to learn about the TWS API, just skip on ahead.

Part 2: Preparing to Use the TWS Java API

Part 2 walks you through the different things you'll need to do before your API application can
effectively communicate with TWS. We'll help you download and install the API software,
configure TWS and get the Java Test Client sample application up and running. A lot of this
information is very important when you first get started, but once it's done, well, it's done,
and you most likely won't need much from this section once you've completed it.
Getting Started with the TWS Java API 8

Introduction
How to Use this Book
Part 3: Getting to Know the Java Test Client

Part 3 gets you working with the Java Test Client: learning how to request, receive and cancel
market data, market depth, historical data, how to place an order and monitor your account
activity. We'll tell you exactly what methods you need to use to send info to TWS, and just
what TWS will send you back. We've already documented the method parameters,
descriptions and valid values in the API Reference Guide, so instead of duplicating efforts and
filling this book up with those important reference tidbits, we provide targeted links to
different sections of the users' guide as we need them.

Part 4: Where to Go from Here

After filling your head with boatfuls of API knowledge, we wouldn't dream of sending you off
empty-handed! Part 5 includes some additional information about linking to TWS using our
Java API, then tells you how to keep abreast of new API releases (which of course means new
features you can incorporate into your trading plan), how to navigate the Interactive Brokers
website to find support and information, and what resources we recommend to help you
answer questions outside the realm of IB support, questions such as "Why isn't my Java JDK
working?"

Footnotes and References
1Any symbols displayed are for illustrative purposes only and are not intended to portray a
recommendation.
Getting Started with the TWS Java API 9

Introduction
How to Use this Book
Icons

TWS-Related

When you see this guy, you know that there is
something that relates specifically to TWS: a new
feature to watch for, or maybe something you’re
familiar with in TWS and are looking for in the API.

Java Tip

The Java tips are things we noted and think you might
find useful. They don't necessarily relate only to TWS.
We don't include too many of these, but when you see
it you should check it out - it will probably save you
some time.

Important!

This shows you where there is a particularly useful or
important point being made.

Take a Peek!

You may want to take a peek, but it isn’t the end of the
world if you don’t.

Go Outside!

This icon denotes references outside of this book that
we think may help you with the current topic, including
links to the internet or IB site, or a book title.
Getting Started with the TWS Java API 10

Introduction
How to Use this Book
Document Conventions
Here’s a list of document conventions used in the text throughout this book.

In addition, Java code snippets appear in the following format:

Convention Description Examples

Bold Indicates:
• menus

• screens

• windows

• dialogs

• buttons

• check boxes

• tabs

• keys you press

• words you type
into entry fields

• names of classes
and methods

On the Tickers page, select a
row by clicking the row number
in the far left column…

Press Ctrl+C to copy…

Italics Indicates:
• commands in a

menu

• objects on the
screen that you
cannot select, such
as text labels

• items in drop-down
lists

To access the users’ guide,
under the Software menu,
select Trader Workstation, then
click Users’ Guide.

EClientSocket constructor

EClientSocket m_client = new EClientSocket(this);
Getting Started with the TWS Java API 11

Introduction
How to Use this Book
Getting Started with the TWS Java API 12

2
TWS and the Java API

The best place to start is by getting an idea of what Trader Workstation (TWS), is all about. In
this section, first we'll describe TWS and some of its major features. Then we'll explain how
the API can be used to enhance and customize your trading environment. Finally, we'll give
you a summary of some of the things the Java API can do for you!

Here's what you'll find in this section:

• Chapter 1 - What is Trader Workstation?

• Chapter 2 - Why Use the TWS Java API?
Getting Started with the TWS Java API 13

TWS and the Java API
Chapter 1 - What is Trader Workstation?
Chapter 1 - What is Trader Workstation?
Interactive Brokers' Trader Workstation, or TWS, is an online trading platform that lets you
trade and manage orders for all types of financial products (including stocks, bonds, options,
futures and Forex) on markets all over the world - all from your choice of two workspaces:

• The Advanced Order Management workspace, which is a single spreadsheet-like screen.

• Mosaic, a single, comprehensive and intuitive workspace which provides easy access to
Trader Workstation’s trading, order management and portfolio functionality.
Getting Started with the TWS Java API 14

TWS and the Java API
Chapter 1 - What is Trader Workstation?
To get a little bit of a feel for TWS, go to the IB website and try the TWS
demo application. Its functionality is slightly limited and it only supports a
small number of symbols, but you'll definitely get the idea. Once you
have an approved, funded account you'll also be able to use PaperTrader,

our simulated trading tool, with paper-money funding in the amount of
$1,000,000, which you can replenish at any time through TWS Account
Management.
Getting Started with the TWS Java API 15

TWS and the Java API
Chapter 1 - What is Trader Workstation?
What Can You Do with TWS?
So, what can you do with TWS? For starters, you can:

• Send and manage orders for all sorts of products (all from the same screen!);

• Monitor the market through Level II, NYSE Deep Book and IB's Market Depth;

• Keep a close eye on all aspects of your account and executions;

• Use Technical, Fundamental and Price/Risk analytics tools to spot trends and analyze
market movement;

• Completely customize your trading environment through your choice of modules,
features, tools, fonts and colors, and user-designed workspaces.

Basically, almost anything you can think of TWS can do - or will be able to do soon. We are
continually adding new features, and use the latest technology to make things faster, easier
and more efficient. As a matter of fact, it was this faith in technology's ability to improve a
trader's success in the markets (held by IB's founder and CEO Thomas Peterffy) that launched
this successful endeavor in the first place. Since the introduction of TWS in 1995, IB has
nurtured this relationship between technology and trading almost to the point of obsession!

A Quick Look at TWS
This section gives you a brief overview of the most important parts of TWS.

The TWS Quote Monitor

First is the basic TWS Quote Monitor. It's laid out like a spreadsheet with rows and columns.
To add tickers to a page, you just click in the Underlying column, type in an underlying symbol
and press Enter, and walk through the steps to select a product type and define the contract.
Voila! You now have a live market data line on your trading window. It might be for a stock,
option, futures or bond contract. You can add as many of these as you want, and you can
create another window, or trading page, and put some more on that page. You can have any
and all product types on a single page, maybe sorted by exchange, or you can have a page for
stocks, a page for options, etc. Once you get some market data lines on a trading page, you're
ready to send an order.

The Order Ticket

What? An order ticket? Sure, we have an order ticket if that's what you really want. But we
thought you might find it easier to simply click on the bid or ask price and have us create a
complete order line instantly, right in front of your eyes! Look it over, and if it's what you want
click a button to transmit the order. You can easily change any of the order parameters right
on the order line. Then just click the green Transmit guy to transmit your order! It's fast and
it's easy, and you can even customize this minimal two-click procedure (by creating hotkeys
and setting order defaults for example) so that you're creating and transmitting orders with
just ONE click of the mouse.
Getting Started with the TWS Java API 16

TWS and the Java API
Chapter 1 - What is Trader Workstation?
Real-Time Account Monitoring

TWS also provides a host of real-time account and execution reporting tools. You can go to the
Account Window at any time to see your account balance, total available funds, net liquidation
and equity with loan value and more. You can also monitor this data directly from your trading
window using the Trader Dashboard, a monitoring tool you can configure to display the last
price for any contracts and account-related information directly on your trading window.

So - TWS is an all-inclusive, awesome powerful trading tool. You may be wondering, "Where
does an API fit in with this?" Read on to discover the answer to that question.

For more information on TWS, see the TWS Users' Guide on our
web site.
Getting Started with the TWS Java API 17

TWS and the Java API
Chapter 2 - Why Use the TWS Java API?
Chapter 2 - Why Use the TWS Java API?
OK! Now that you are familiar with TWS and what it can do, we can move on to the amazing
API. If you actually read the last chapter, you might be thinking to yourself "Why would I want
to use an API when TWS seems to do everything." Or you could be thinking "Hmmmm, I
wonder if TWS can… fill in the blank?" OK, if you're asking the first question, I'll explain why
you might need the API, and if you're asking the second, it's actually the API that can fill in the
blank.

TWS has the capability to do tons of different things, but it does them in a certain way and
displays results in a certain way. It's likely that our development team, as fantastic as they
are, hasn't yet exhausted the number of features and way of implementing them that all of
you collectively can devise. So it's very likely that you, with your unique way of thinking, will
be or have been inspired by the power of TWS to say something like "Holy moly, I can't
believe I can really do all of this with TWS! Now if I could only just (fill in the blank),my life
would be complete!"

That's where the API comes in. Now, you can fill in the blank! It's going to take a little work to
get there, but once you see how cool it is to be able to access functionality from one
application to another, you'll be hooked.

TWS and the API
In addition to allowing you pretty much free reign to create new things and piece together
existing things in new ways, the API is also a great way to automate your tasks. You use the
API to harness the power behind TWS - in different ways.

Here's an analogy that might help you understand the relationship between TWS and the API.
Start by imagining TWS as a book (since TWS is constantly being enhanced, our analogy
imagines a static snapshot of TWS at a specific point in time). It's the reference book you were
looking for, filled with interesting and useful information, a book with a beginning, middle and
end, which follows a certain train of logic. You could skip certain chapters, read Chapter 10
first and Chapter 2 last, but it's still a book. Now imagine, in comparison, that the API is the
word processing program in which the book was created with the text of the book right there.
This allows you access to everything in the book, and most importantly, it lets you continually
change and update material, and automate any tasks that you'd have to perform manually
using just a book, like finding an index reference or going to a specific page from the table of
contents.

The API works in conjunction with TWS and with the processing functions that run behind
TWS, including IB's SmartRouting, high-speed order transmission and execution, support for
over 40 orders types, etc. TWS accesses this functionality in a certain way, and you can design
your API to take advantage of it in other ways.
Getting Started with the TWS Java API 18

TWS and the Java API
Chapter 2 - Why Use the TWS Java API?
Available API Technologies
IB provides a suite of custom APIs in multiple programming languages, all to the same end.
These include Java, C++, Active X for Visual Basic and .NET, ActiveX for Excel, DDE for Excel
(Visual Basic for Applications, of VBA), CSharp and POSIX. This book focuses specifically on
just one, the Java version. Why would you use Java over the other API technologies? The main
reason might be that you are a Java expert. If you don't know Java or any other programming
language, you should take a look at the Excel/DDE API, which has a much smaller learning
curve. But if you know Java, this platform offers more flexibility than the DDE for Excel, is
supported on Windows, MAC, and Unix/Linux (the DDE is only supported in Windows), and
provides very high performance.

For more information about our APIs, see the Trading Technology >
API Solutions page on our web site.

An Example
It's always easier to understand something when you have a real life example to contemplate.
What follows is a simple situation in which the API could be used to create a custom result.

TWS provides an optional field that shows you your position-specific P&L for the day as either
a percentage or an absolute value. Suppose you want to modify your position based on your
P&L value? At this writing, the only way to do this would be to watch the market data line to
see if the P&L changed, and then manually create and transmit an order, but only if you
happened to catch the value at the right point. Hmmmmm, I don't think so! Now, enter the
API! You can instruct the API to automatically trigger an order with specific parameters (such
as limit price and quantity) when the P&L hits a certain point. Now that's power! Another nice
benefit of the API is that it gives you the ability to use the data in TWS in different ways. We
know that TWS provides an extensive Account Information window that's chock-full of
everything you'll ever want to know about your account status. The thing is, it's only displayed
in a TWS window, like this:
Getting Started with the TWS Java API 19

TWS and the Java API
Chapter 2 - Why Use the TWS Java API?
Lovely though it is, what if you wanted to do something else with this information? What if you
want it reflected in some kind of banking spreadsheet where you log information for all
accounts that you own, including your checking account, Interactive Brokers' account, 401K,
ROIs, etc? Again - enter the API!

You can instruct the API to get any specific account information and put it wherever it belongs
in a spreadsheet. The information is linked to TWS, so it's easy to keep the information
updated by simply linking to a running version of TWS. With a little experimenting, and some
help from the API Reference Guide and the TWS Users' Guide, you'll be slinging data like a
short-order API chef in no time!

There are a few other things you must do before you can start working with the TWS Java API.
The next chapter gets you geared up and ready to go.
Getting Started with the TWS Java API 20

3
Preparing to Use the Java API

Although the API provides great flexibility in implementing your automated trading ideas, all of
its functionality runs through TWS. This means that you must have a TWS account with IB,
and that you must have your TWS running in order for the API to work. This section takes you
through the minor prep work you will need to complete, step by step.

Here's what you'll find in this section:

• Chapter 3 - Download the Java JDK and IDE

• Chapter 4- Download the API Software

• Chapter 5 - Connect to the Java Test Client

We want to tell you again that this book focuses on the TWS side of
the Java API - we don't really help you to learn Java. Unless you
are a fairly proficient Java programmer, or at least a very confident
and bold beginner, this may be more than you want to take on. We
suggest you start with a beginner's Java programming book, and

come back to us when you're comfortable with Java.
Getting Started with the TWS Java API 21

Preparing to Use the Java API
Chapter 3 - Download the Java JDK and IDE
Chapter 3 - Download the Java JDK and IDE
OK, well we've already said that you need to know Java before you can successfully implement
your own TWS Java API application, and there's a good chance you already have the Java
tools you'll need downloaded and installed. But in case you don't, we'll quickly walk you
through what you need:

• The Java development kit (JDK)

• An integrated development environment (IDE).

We like the J2SE Development Kit and NetBeans IDE Bundle that's available (free!) from the
Sun website. We're not including any version numbers of these Sun Java products, as they'll
likely be different by the time you read this.

You can also use Eclipse as your IDE. You can download the Eclipse Java IDE from
www.eclipse.org. Of course, you can use any IDE with which you're comfortable.

In this book we use NetBeans as the IDE of choice, so if you're using
another IDE you'll have to reinterpret our instructions to fit your
development environment. If you're using NetBeans and aren't totally
familiar with it, we recommend browsing through the Quick Start or
the tutorial, both of which are available on the Help menu.

Anyway, I know we're not giving you too much here, but we are assuming you have enough
savvy to find this stuff, download it, and install it. This is a tough line for us to walk, because
we're really focusing on the TWS Java API for beginners, not on Java for beginners. If you're
having trouble at this point, you should probably start with the TWS DDE for Excel API to get
your feet wet!

Once you have these pieces downloaded and installed, you can go to the IB website and
download the TWS API software.
Getting Started with the TWS Java API 22

Preparing to Use the Java API
Chapter 4- Download the API Software
Chapter 4- Download the API Software
Next, you need to download the API software from the IB website.

Step 1: Download the API software.

This step takes you out to the IB website at
https://individuals.interactivebrokers.com/en/index.php?f=1325. The menus are along the
top of the homepage. Hold your mouse pointer over the Trading Technology menu, then click
API Solutions.

On the API Solutions page, click the more info button next to IB API.
Getting Started with the TWS Java API 23

https://www.interactivebrokers.com/en/index.php?f=1325

Preparing to Use the Java API
Chapter 4- Download the API Software
On the next page that appears, click the API Software button.

Click the I Agree button on the license agreement page to open the API software download
page.

This displays the IB API page which shows a table with buttons that initiate the API software
download process for Windows, MAC or Unix platforms. When available, there will also be a
Windows Beta version of the software. Find the OS you need, then click the button to
download the API installation program.
Getting Started with the TWS Java API 24

Preparing to Use the Java API
Chapter 4- Download the API Software
For this book, we assume that you are using Windows. If you're
using a different operating system (Mac, Unix), be sure to adjust
the instructions accordingly!

In the Windows column, click the IB API for Windows button. This opens a File Download
box, where you can decide whether to save the installation file, or open it. We recommend you
choose Save and then select a place where you can easily find it, like your desktop (you
choose the path in the Save in field at the top of the Save As box that opens up). Once you've
selected a good place to put it, click the Save button. It takes seconds to download the
executable file. Note that the API installation file is named for the API version; for example,
TWS API Install 9.69.01.msi.

We'll usually be stressing just the opposite, but at this point, you
need to make sure TWS is not running. If it is, you won't be able to
install the API software.
Getting Started with the TWS Java API 25

Preparing to Use the Java API
Chapter 4- Download the API Software
Step 2: Install the API software.

Next, go to the place where you saved the file (for example, your desktop or some other
location on your computer), and double-click the API software installation file icon. This starts
the installation wizard, a simple process that displays a series of dialogs with questions that
you must answer.

Once you have completed the installation wizard, the sample application installs, and you're
ready to open the Java Test Client, connect to TWS, and get started using the Java API sample
application!
Getting Started with the TWS Java API 26

Preparing to Use the Java API
Chapter 5 - Connect to the Java Test Client
Chapter 5 - Connect to the Java Test Client
OK, you've got all the pieces in place. Now that we're done with the prep work, it's time to get
down to the fun stuff.

Although the API provides great flexibility in implementing your automated trading ideas, all of
its functionality runs through TWS. This means that you must have a TWS account with IB,
and you must have TWS running in order for the API to work. This section describes how to
enable TWS to connect to the Java API. Note that if you don't have an account with IB, you
can use the Demo TWS system to check things out.. If you DO have an account, we
recommend opening a linked PaperTrader test account, which simulates the TWS trading
environment, and gives you $1,000,000 in phantom cash to play with. (Don’t worry about
running out of simulated money; you can log into Account Management with your PaperTrader
test account credentials and request more at any time!)

Enabling TWS to support the API is probably the simplest step you'll encounter in this book.
It's probably more difficult to actually remember to log into TWS before you run the API!

Set Up the Java Test Client
The first thing you’re going to do is set up the Java Test Client. Go ahead and open NetBeans,
then click New Project. This starts the project wizard.
Getting Started with the TWS Java API 27

Preparing to Use the Java API
Chapter 5 - Connect to the Java Test Client
By default, Netbeans starts a new project with Java selected as the Category and Java
Application selected as the Project (as shown in the above screen). These are the correct
settings for you, so just click Next.

On the next screen in the wizard, enter a project name, project location and project folder.
Uncheck the box for Create Main Class and click Finish.

You new Java project is created and opens. Now right-click your new project from the Projects
list and select Properties.

The Project Properties dialog opens.
Getting Started with the TWS Java API 28

Preparing to Use the Java API
Chapter 5 - Connect to the Java Test Client
In the Source Package Folders area, click Add Folder and navigate to the directory where you
installed the API sample program. Add two folders:

• \samples\Java\apidemo

• \source\JavaClient\com

Then click OK.

Step 3: Run the Java Test Client.

Now it's time to run the application. Press F6 to run. When the system prompts you to select a
main class, click OK (recall that earlier, you had to uncheck the Create Main Class box when
you first set up the project; now is the time when you assign the main class). And of course,
click OK again.

Now press F6 to run again. You're looking at the java test client, and you should see
something like this thing below:
Getting Started with the TWS Java API 29

Preparing to Use the Java API
Chapter 5 - Connect to the Java Test Client
Here you are. What now? Part II focuses on performing trading tasks supported in the sample
client. We'll take a quick, general look at what's going on behind the GUI. Then we'll walk
through the basics of the TWS API, in the order defined by the tabs in the Java Test Client
layout, pictures above.

The TWS API does not have to be written as a GUI program, but to
completely understand how the Java Test Client works, you should
have some general understanding of Java Swing. We recommend
searching for Swing-related materials on the Java web site at

oracle.com, which include full documentation and tutorials as well.
Getting Started with the TWS Java API 30

4
Market Data

You've completed the prep work, and you have the Java Test Client up and running. This
section of the book starts with a description of the basic framework of the Java Test Client,
then reviews the TWS Java API methods associated with each trading task.

In the following chapters, we'll show you the methods and parameters behind this sample
application, and how they call the methods and parameters in the TWS Java API.

Here's what you'll find in this section:

• Chapter 6 - Connect the Java Test Client to TWS

• Chapter 7: Requesting and Canceling Market Data

• Chapter 8 - Requesting and Canceling Market Depth

• Chapter 9 - Requesting and Canceling Historical Data

• Chapter 10 - Requesting and Canceling Real Time Bars

• Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

• Chapter 12: Requesting Contract Data

Using the Java Test Client is a good way to practice locating and using the reference
information in the API Reference Guide. With the sample program, you can compare the data
in the sample message with the method parameters in the API Reference Guide.
Getting Started with the TWS Java API 31

Market Data
Chapter 6 - Connect the Java Test Client to TWS
Chapter 6 - Connect the Java Test Client to
TWS

This chapter describes the basic framework of the Java Test Client and what happens when
you connect and disconnect to a running instance of TWS.

Java API Basic Framework
Let's take a look at the basic framework of the Java API. Here's the Java Test Client when you
first run it:

As you can see, we’ve designed the Java Test Client to make it easy to find the most common
functions; each group of function is displayed on its own tabbed panel and you can easily
switch between panels by clicking the appropriate tab at the top of the Java Test Client
window.
Getting Started with the TWS Java API 32

Market Data
Chapter 6 - Connect the Java Test Client to TWS
The Java API contains the following packages:

• apidemo - The classes in apidemo make up the actual Java Test Client. If you look at
the code, you will see that the names of the classes correspond to the various panels in
the Test Client.

• apidemo.util - This package contains utility classes used by the Java Test Client. In
case you were wondering, you can also reuse these classes for your own test client user
interface.

• com.ib.client - This package contains all of the classes that you will need to actually
use the Java API. Two or the more notable classes in this package are EclientSocket,
which contains the methods used to send messages to TWS, and the EWrapper
interface, which defines the methods that receive messages from TWS.

• com.ib.contract - This package contains subclasses of the Contract class that were
used in the old Java Test Client. We have kept this package intact for backward
compatibility, but you can consider these subclasses to be deprecated.

• com.ib.controller - This is a new package that provides an alternate way of using the
Java API. The new Java Test Client uses the classes in this package but because this
information is more advanced than this Getting Started Guide, we won’t got into details.

Throughout this book, we've included links to related help topics in
the online API Reference Guide. So if you see a link, feel free to
click it if you want to learn more about a particular class or method
in our TWS Java API.

Log Into TWS
Of course, the first thing you have to do before you can even begin to use the Java Test Client
is log into TWS. Once you’re logged in, you can connect the Java Test Client to TWS.

About Logging In

Logging into TWS is easy. You can run the TWS from your Internet browser (which is the
recommended method), or download the software to your PC and launch it directly from your
desktop as a standalone application.

The browser-based version:

• Allows you to access your account and execute trades from any Java™-enabled internet
browser.

• Is always running the latest release.

• Allows you to save your settings from your primary machine to a server so that your
TWS will look exactly the same regardless of what Internet machine you use to log in.

The standalone version uses less memory and may run faster, but requires you to
download each release to take advantage of new features. To download to your
PC, see the Installation Instructions on the website.
Getting Started with the TWS Java API 33

http://www.interactivebrokers.com/en/software/installationInstructions.php?ib_entity=llc

Market Data
Chapter 6 - Connect the Java Test Client to TWS
To log into TWS:

1 From the Login menu on our website, select Trader Workstation Latest from the
drop-down list. You can also log into the previous version of TWS and the current TWS
Beta version.

2 In the Login box, enter your username and password, and click Login.
Getting Started with the TWS Java API 34

Market Data
Chapter 6 - Connect the Java Test Client to TWS
Login Box Options:

• The color palette allows you to choose a new color skin for TWS. If you select a palette
and want to change it once you have logged in, use the Display> Style page in Global
Configuration.

• Settings Directory - By default, TWS files are saved in C:\Jts. If you would like to
change the location of your settings files, use the Browse button to specify a new
directory.

• Use/store settings on server - This option allows you to save your settings, including
market data, pages etc., on our server instead of on your local machine. If checked,
your workstation will have the same data and look regardless of your login location. If
unchecked, settings are only saved on the computer you are currently using.

• Use SSL - Your identity and trading information are always protected. Checking the Use
SSL option gives added privacy and integrity to your order information as it travels over
the Internet. Minor performance impacts may be experienced depending on the
capabilities of your PC.

• Click Show all fields to select a different language for TWS and to have the system
migrate settings that you may have saved under a different user name.

• Mouse-driven login - Click the Keyboard icon in the title bar to enter your username and
password using the mouse instead of your computer keyboard. Use the mouse to click
the appropriate keys on the clickable keyboard display.

Enable the API Connection through TWS
To run the API through TWS, you must always have your system running and it must be
configured to use any of the API components.

To enable API connection through TWS

1 On the Edit menu in TWS, select Global Configuration. Then select API in the left pane,
then click Settings.

2 In the right pane, click the check box for Enable ActiveX and Socket Clients (ActiveX,
C++ and Java API connections). You must have this setting enabled to connect to the
API through TWS.

You’re all set and you can now connect the Java Test Client to TWS and start learning about all
the great features supported by the Java API!
Getting Started with the TWS Java API 35

Market Data
Chapter 6 - Connect the Java Test Client to TWS
Connect to TWS
At this point, you should be logged into TWS and have the Java Test Client open. The first
thing you need to do is connect the Java Test Client to TWS. The Connection panel is displayed
by default.

To connect to TWS, simply fill in the fields then click the Connect link (pictured below). You’ll
notice that the Port and Client ID fields are filled in for you already; you can enter an IP
address in the Host field and enter a different number in the Client ID field. Notice that the
current connection status (Disconnected) is displayed for you.

The following dialog opens when you try to connect to TWS:

Click Yes to tell TWS to accept your connection.

If the connection is successful, the Connection status in the Java Test Client displays
“”Connected” and various messages appear in the Messages panel at the bottom of the Java
Test Client.
Getting Started with the TWS Java API 36

Market Data
Chapter 6 - Connect the Java Test Client to TWS
Getting Started with the TWS Java API 37

Market Data
Chapter 6 - Connect the Java Test Client to TWS
What Happens When I Click Connect?

When you click the Connect link, the API calls the eConnect() method in EClientSocket. The
entries in the Connection panel fields (Host, Port and Client ID) are passed to TWS as
attributes of econnect() as shown below.

This method must be called before any other method. Why? Well, because you have to be
connected to TWS before you can send it any other messages!

There is no feedback for a successful connection, but any subsequent attempt to connect while
you’re already connected will return the message "Already connected." As you can see in the
method code above, we have some code that runs when you click the Connect link but are
already connected to TWS.

Disconnecting from a Running Instance of TWS

To disconnect the Java Test Client, or any API application you have built and are running, from
TWS, simply click the Disconnect link on the Connection tab.

The eConnect() method

public synchronized void eConnect(String host, int port, int
clientId) {
 // already connected?
 host = checkConnected(host);
 if(host == null){
 return;
 }
 try{
 Socket socket = new Socket(host, port);
 eConnect(socket, clientId);
 }
 catch(Exception e) {
 eDisconnect();
 connectionError();
 }
 }
Getting Started with the TWS Java API 38

Market Data
Chapter 6 - Connect the Java Test Client to TWS
When you click the Disconnect link, we call the eDisconnect() method in the Java API
EClientSocket object.

As you can see, there’s more going on in the edisconnect() method than we’re describing
here, but if you’re an experienced Java programmer, you can look into the code in more detail
yourself. For the rest of this guide, we’ll usually just show you the header portion of a method.

Now let's move on, and see what happens when you call for market data.

The edisconnect() method

 public synchronized void eDisconnect() {
 // not connected?
 if(m_dos == null) {
 return;
 }
 m_connected = false;
 m_serverVersion = 0;
 m_TwsTime = "";

 FilterOutputStream dos = m_dos;
 m_dos = null;
 EReader reader = m_reader;
 m_reader = null;

 try {// stop reader thread; reader thread will close input stream
 if(reader != null) {
 reader.interrupt();
 }
 }
 catch(Exception e) {
 }

 try {
 // close output stream
 if(dos != null) {
 dos.close();
 }
 }
 catch(Exception e) {
 }
 }
Getting Started with the TWS Java API 39

Market Data
Chapter 7: Requesting and Canceling Market Data
Chapter 7: Requesting and Canceling Market
Data

This chapter describes how the Java Test Client requests and cancels market data. As you can
see, the Java Test Client has conveniently put the Market Data interface on its own tab:
Getting Started with the TWS Java API 40

Market Data
Chapter 7: Requesting and Canceling Market Data
What Happens When I Click the Request Top Market Data Link?
Once you connect to TWS using the Java Test Client, you get market data by clicking the
Market Data tab, then entering an underlying and some other information in the Top Market
Data fields, and clicking Request Top Market Data.

When you click the Request Top Market Data link, we call the reqMktData() method, and
the information you entered into the fields shown above are sent to TWS as parameters of that
method.
Getting Started with the TWS Java API 41

Market Data
Chapter 7: Requesting and Canceling Market Data
The reqMktData() Method

Let's find out which parameters to use for requesting market data. The Class EClientSocket
reqMktData() method looks like this:

If you look at the actual code, you’ll see that reqMktData() has a lot more going on than we’re
discussing here. For example, the method also checks the server version of TWS and displays
appropriate messages alerting you of features that are not supported in that TWS version. For
now though, we’re just concerned with the initial parameters that reqMktData() sends to
TWS in your quest for market data.

As you can see in the following table, this method has four parameters:

This table is for illustrative purposes only and is not intended to portray valid API documentation.

Now let's take a closer look at the Top Market Data entry fields you filled in when you clicked
the Req Mkt Data link and see how and where the two relate.

public synchronized void reqMktData(int tickerId, Contract
contract, String genericTickList, boolean snapshot) {
.
.
.

Parameter Description
tickerId The ticker id. Must be a unique value. When the market data

returns, it will be identified by this tag. This is also used when
canceling the market data.

contract This class contains attributes used to describe the contract.

genericTicklist A comma delimited list of generic tick types.

snapshot Check to return a single snapshot of market data and have the
market data subscription cancel. Do not enter any
genericTicklist values if you use snapshot.
Getting Started with the TWS Java API 42

Market Data
Chapter 7: Requesting and Canceling Market Data

You wouldn’t know it by looking at it, but the circled section in the picture above corresponds
to the parameters in the reqMktData() method, specifically attributes that are sent with
contract, itself a parameter of the method. The Symbol field corresponds to the String
attribute m_symbol, the Sec type field corresponds to the String attribute m_secType, and so
on.

For a complete list of ALL of the attributes in the contract class, see the API
Reference Guide.

Once you have these parameters filled out to your satisfaction and click Request Top Market
Data, you're basically sending a message to TWS asking to see market data for the specific
contract. TWS will receive this message and reply with your requested market data. Without
changing anything, let's use the data in the image above to see what happens next.

The Symbol, Security Type, Exchange and Currency values are required
for all instrument types. If your security type is STK, the values to the left
are all you need. But if you're looking for the latest price on a Jan08 27.5
call, you need to give the method a bit more than that. I mean, it's really

cool and can do a lot of things, but it can't read minds! The moral: be sure you
include values in the appropriate fields based on what return values you want
to get.
Getting Started with the TWS Java API 43

https://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm

Market Data
Chapter 7: Requesting and Canceling Market Data
TWS returns the market data values on a separate Top Data tabbed area as shown in the
screen below:

EWrapper Methods that Return Market Data

The Java API includes an EWrapper interface. EWrapper includes all of the methods that return
data to the API in response to a method being sent. In the case of market data, it is returned
from TWS via the following methods in the EWrapper interface:

tickPrice()

void tickPrice(int tickerId, int field, double price, int
canAutoExecute)

tickSize()

void tickSize(int tickerId, int field, int size)
Getting Started with the TWS Java API 44

Market Data
Chapter 7: Requesting and Canceling Market Data
Let’s take a closer look at these different methods. First, you should notice that they all share
the parameter tickerID, which simply binds the returned market data to the correct
reqMktData() call.

Also take a look at the actual data that is returned to the Java Test Client: Description, Bid
Size, Bid (price), Ask Size, Ask (price), Last, Time, Change and Volume. Our original request
for market data was for stock, so we can ignore tickOptionComputation() and tickEFP()
for now because those methods return data for option underlyings and EFPs, respectively.

Now let’s look at the other tick methods. tickPrice() and tickSize() return, as you might
expect, price and size information. Both methods contain the field parameter, which is an
integer that specifies the type of price and size, respectively.

• In tickPrice(), the field integer can be 1 for bid, 2, for ask, 4 for last, 6 for high, 7 for
low and 9 for close. The actual price is sent in the double parameter price, and the
canAutoExecute parameter specifies whether the price tick is available for automatic
execution.

• In tickSize(), the field integer can be 0 for bid size, 3 for ask size, 5 for last size, or 8
for volume. The actual size is sent in the integer parameter size.

tickGeneric() and tickString() both pass an integer parameter called tickType, which
represents some aspect of market data, and an additional parameter called value, which is the
actual value of specified tick type. There are a whole lot of these tick types, so we won’t show
you all of them here. Examples of integers that reperesent tick types are 31 for BID_EXCH and
23 for OPTION_HISTORICAL_VOL. Each tick type can only be sent with a specific tick method.
There’s a lot you can do with market data requests, so we won’t get into all of that in this
guide. You can see all of the tick types in the API Reference Guide here.

The tick methods are described in the Java EWrapper Methods section of the API
Reference Guide.

tickOptionComputation()

void tickOptionComputation(int tickerId, int field, double
impliedVol, double delta, double optPrice, double pvDividend,
double gamma, double vega, double theta, double undPrice)

tickGeneric()

void tickGeneric(int tickerId, int tickType, double value)

tickString()

void tickString(int tickerId, int tickType, String value)

tickEFP()

void tickEFP(int tickerId, int tickType, double basisPoints, String
formattedBasisPoints, double impliedFuture, int holdDays, String
futureExpiry, double dividendImpact, double dividendsToExpiry)
Getting Started with the TWS Java API 45

https://www.interactivebrokers.com/en/software/api/apiguide/tables/tick_types.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/java_ewrapper_methods.htm

Market Data
Chapter 7: Requesting and Canceling Market Data
Getting Frozen Market Data
The Java Test Client also lets you request frozen market data. What’s frozen market data, you
ask? Well, frozen market data is simply the last data recorded in our system.

Near the bottom of the Market data tab of the Java Test Client, you will notice a Market data
type drop-down menu. To request frozen market data from TWS, simply select Frozen from
the drop-down, then click Go.

When you request frozen market data, you’re actually sending an EClientSocket method called
reqMktDataType(), which is shown below.

The marketDataType parameter is an integer that can be set to 1 for real-time data or 2 for
frozen market data. In the Java Test Client, when you select Frozen as the Market data type,
you are actually setting this parameter to 2, for frozen market data. Needless to say, you can
change the Market data type back to Realtime to get real-time streaming market data, which
would be the same thing as setting the marketDataType parameter to 2.

TWS sends a marketDataType() callback to the API, with a single parameter type set to
Frozen or RealTime, to announce that market data has been switched between frozen and
real-time. This notification occurs only when market data switches between real-time and
frozen. The marketDataType() callback accepts a reqId parameter and is sent per every
subscription because different contracts can generally trade on a different schedule.

During normal trading hours, the API receives real-time market data. If you use the
reqMarketDataType() call for frozen market data, you are telling TWS to automatically
switch to frozen market data after the close. Then, before the opening of the next trading day,
market data will automatically switch back to real-time market data.

Whew! Got all that?

mktDataType()

void marketDataType(int reqId, int marketDataType)
Getting Started with the TWS Java API 46

Market Data
Chapter 7: Requesting and Canceling Market Data
Getting a Snapshot of Market Data
Another way to get market data from TWS to the Java Test Client is to get a snapshot of
market data. A market data snapshot gives you all the market data in which you are
interested for a contract for a single moment in time. What this means is that instead of
watching the requested market data continuously update on the Top Market Data tab of the
Java Test Client, you get a single "snapshot" of the data. This frees you from having to keep
up with the changing market data and having to cancel the market data request when you are
finished.

While you can’t do this directly in the Java Test Client, you can do this in your code by setting
the boolean snapshot parameter in reqMktData() to true. When you get snapshot market
data, an additional method in the EWrapper interface called tickSnapshotEnd() is returned
from TWS to signal the completion of the snapshot.

Canceling Market Data
In the Java Test Client, you can cancel market data by clicking the little “x” next to the Top
Data tab, which is circled in red in the following image.
Getting Started with the TWS Java API 47

Market Data
Chapter 7: Requesting and Canceling Market Data
When you elect to cancel market data, the API sends the EClientSocket cancelMktData()
method to TWS, and market data for the specified ticker id is canceled. Of course, there’s
more going on in this method than we’re going to discuss in this guide, so go ahead and take
a deeper look into the code when you’re ready.

And that’s all there is to canceling market data! Next we’ll show you how to request market
depth, or as it’s called in the Java Test Client, “Deep Book.”

cancelMktData()

public synchronized void cancelMktData(int tickerId)
Getting Started with the TWS Java API 48

Market Data
Chapter 8 - Requesting and Canceling Market Depth
Chapter 8 - Requesting and Canceling Market
Depth

This chapter discusses the methods for requesting and canceling market depth in the Java
Test Client. We'll show you the methods and parameters behind the sample application and
the methods that return data from TWS.

To request market depth in the Java Test Client, you need to click the Deep Book tab under
Market Data. You’ll probably notice that this tab looks very similar to the Top Market Data tab.
So it stands to reason that requesting market depth (AKA deep market data) in the Java Test
Client is pretty much the same as requesting top market data.
Getting Started with the TWS Java API 49

Market Data
Chapter 8 - Requesting and Canceling Market Depth
What Happens When I Click the Request Deep Market Data Link?
Once you connect to TWS using the Java Test Client, you get deep market data by clicking the
Market Data tab, then clicking the Deep Book tab, then entering an underlying and some other
information in the Deep Book fields, and clicking Request Deep Market Data.

When you click the link, we make a call to the EClientSocket reqMktDepth() method below,
which sends the values you entered in the market data fields to TWS.

The reqMktDepth() Method

Let's find out which parameters are used when you request market depth. The Class
EClientSocket reqMktDepth() method header looks like this:

This table is for illustrative purposes only and is not intended to portray valid API documentation.

public synchronized void reqMktDepth(int tickerId, Contract
contract, int numRows)

Parameter Description
tickerId The ticker Id. Must be a unique value. When the market depth

data returns, it will be identified by this tag. This is also used
when canceling the market depth.

contract This class contains attributes used to describe the contract.

numRows Specifies the number of market depth rows to return.
Getting Started with the TWS Java API 50

Market Data
Chapter 8 - Requesting and Canceling Market Depth
As you can see from the table, this method has three parameters, one of which, contract,
we’ve seen before. And just like before, the fields you fill out on the Deep Book tab in the Java
Test Client are attributes of the contract class. Once again, we reference example attributes in
the contract class: the Symbol field corresponds to the String attribute m_symbol, the Sec
type field corresponds to the String attribute m_secType, and so on.

For a complete list of ALL of the attributes in the contract class, see the API
Reference Guide.

The deep market data (AKA market depth) will be returned via the updateMktDepth() and
updateMktDepthL2() methods, both part of the EWrapper interface.

In the Java Test Client, the returned deep market data looks something like this:
Getting Started with the TWS Java API 51

https://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm

Market Data
Chapter 8 - Requesting and Canceling Market Depth
The updateMktDepth() and updateMktDepthL2() Methods

These EWrapper methods return deep market data:

updateMktDepth() returns market depth.

updateMktDepthL2() returns Level II market depth.

Canceling Market Depth
To cancel the deep market data in the Java Test Client, simply click the little “x” next the
market data tab labeled “Deep XXX” where XXX is the ticker symbol. When you do this, we call
the EClientSocket method cancelMktDepth(), which sends a message to TWS to stop
sending the deep market data.

Voila! Market depth is canceled!

void updateMktDepth(int tickerId, int position, int operation, int
side, double price, int size)

void updateMktDepthL2(int tickerId, int position, String
marketMaker, int operation, int side, double price, int size)

cancelMktDepth()

public synchronized void cancelMktDepth(int tickerId)
Getting Started with the TWS Java API 52

Market Data
Chapter 9 - Requesting and Canceling Historical Data
Chapter 9 - Requesting and Canceling
Historical Data

This chapter focuses on requesting and canceling historical data. We'll show you the methods
and parameters behind the Java Test Client and how they call the methods in the TWS Java
API.

To request historical data in the Java Test Client, you need to click the Historical Data tab
under the Market Data tab and use the fields and link circled below:
Getting Started with the TWS Java API 53

Market Data
Chapter 9 - Requesting and Canceling Historical Data
What Happens When I Click the Historical Data Link?
When you click the Request historical data link, we call the EClientSocket method
reqHistoricalData(), which uses the fields on the Historical Data tab as its parameters.

The reqHistoricalData() Method

So which parameters are used when you request historical data? The parameters in the
EClientSocket reqHistoricalData() method return the data you request. The
reqHistoricalData() method header looks like this:

This method has numerous parameters that correspond to the fields on the Historical Data tab
in the Java Test Client that you fill in, including end date and time, duration, bar size setting,
what to show, regular trading hours, and date format style. You can easily match the
parameter to the entry field in the Java Test Client.

public synchronized void reqHistoricalData(int tickerId, Contract
contract, String endDateTime, String durationStr, String
barSizeSetting, String whatToShow,int useRTH, int formatDate)

Parameter Description
tickerId The Id for the request. Must be a unique value. When the data

is received, it will be identified by this Id. This is also used when
canceling the historical data request.

contract This class contains attributes used to describe the contract.

endDateTime Use the format yyyymmdd hh:mm:ss tmz, where the time zone
is allowed (optionally) after a space at the end.

durationStr This is the time span the request will cover, and is specified
using the format: <integer> <unit>, i.e., 1 D, where valid units
are:

• " S (seconds)

• " D (days)

• “W (weeks)

• " M (months)

• " Y (years)

If no unit is specified, seconds are used. Also, note "years" is
currently limited to one.
Getting Started with the TWS Java API 54

Market Data
Chapter 9 - Requesting and Canceling Historical Data
barSizeSetting Specifies the size of the bars that will be returned (within
IB/TWS limits). Valid bar size values include:

• 1 sec

• 5 secs

• 15 secs

• 30 secs

• 1 min

• 2 mins

• 3 mins

• 5 mins

• 15 mins

• 30 mins

• 1 hour

• 1 day

whatToShow Determines the nature of data being extracted. Valid values
include:

• TRADES

• MIDPOINT

• BID

• ASK

• BID_ASK

• HISTORICAL_VOLATILITY

• OPTION_IMPLIED_VOLATILITY

useRTH Determines whether to return all data available during the
requested time span, or only data that falls within regular
trading hours. Valid values include:

• 0 - all data is returned even where the market in
question was outside of its regular trading hours.

• 1 - only data within the regular trading hours is
returned, even if the requested time span falls
partially or completely outside of the RTH.

formatDate Determines the date format applied to returned bars. Valid
values include:

• 1 - dates applying to bars returned in the format:

• yyyymmdd{space}{space}hh:mm:dd

• 2 - dates are returned as a long integer specifying
the number of seconds since 1/1/1970 GMT.

Parameter Description
Getting Started with the TWS Java API 55

Market Data
Chapter 9 - Requesting and Canceling Historical Data
There are too many to display the entire list of parameters and their values here, so you'll
have to check out the API Reference Guide for more details.

The historical data returned from TWS looks like this in the Java Test Client:

The historicalData() Method

The values are returned via the parameters in the EWrapper interface historicalData()
method, whose header is shown below.

You can see all of this methods's parameters in the historicalData() method topic of the API
Reference Guide.

void historicalData(int reqId, String date, double open, double
high, double low, double close, int volume, int count, double WAP,
boolean hasGaps)
Getting Started with the TWS Java API 56

https://www.interactivebrokers.com/en/software/api/apiguide/java/historicaldata.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/reqhistoricaldata.htm

Market Data
Chapter 9 - Requesting and Canceling Historical Data
Canceling Historical Data
Like the other functions in the Java Test Client that we’ve already seen, you can cancel your
historical data request by clicking the little “x” on the Historical Data results tab.

When you cancel historical data requests, we call the EClientSocket method
cancelHistoricalData(), and historical data for the specified id is canceled:

cancelHistoricalData() Method

 public synchronized void cancelHistoricalData(int tickerId)
Getting Started with the TWS Java API 57

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
Chapter 10 - Requesting and Canceling Real
Time Bars

This chapter discusses the methods for requesting and canceling real time bars. Real time bars
allow you to get a summary of real-time market data every five seconds, including the
opening and closing price, and the high and the low within that five-second period (using TWS
charting terminology, we call these five-second periods "bars"). You can also get data showing
trades, midpoints, bids or asks. We show you the methods and parameters behind the Sample
GUI, and the methods that are called in the TWS Java API.

To request real time bars, you need to use the fields and link on the Real-time Bars tab, which
is located under the Market Data tab in the Java Test Client. These fields are circled in the
image below:
Getting Started with the TWS Java API 58

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
What Happens When I Click the Request real-time bars Link?
When you click the Request real-time bars link, we call the EClientSocket method
reqRealTimeBars(), which sends the values you entered to TWS (contract information, what
to show and whether or not to include data outside regular trading hours).

In the API release supported by this document, the real-time bars default to a size of five
seconds. This means that no matter what you enter in the Bar Size Setting field in the Sample
dialog, the size of the real-time bars you get will be five seconds.

The reqRealTimeBars() Method

The parameters in the EClientSocket reqRealTimeBars() method return the data you
request. The reqRealTimeBars() method header looks like this:

And here’s what real-time bars returned to the Java Test Client looks like:

public synchronized void reqRealTimeBars(int tickerId, Contract
contract, int barSize, String whatToShow, boolean useRTH)

Parameter Description
tickerId The Id for the request. Must be a unique value. When the data

is received, it will be identified by this Id. This is also used when
canceling the request.

contract This class contains attributes used to describe the contract.

barSizeSetting Currently only 5 second bars are supported, if any other value
is used, an exception will be thrown.

whatToShow Determines the nature of data being extracted. Valid values
include:

• TRADES

• MIDPOINT

• BID

• ASK

useRTH Determines whether to return all data available during the
requested time span, or only data that falls within regular
trading hours. Valid values include:

• 0 - all data is returned even where the market in
question was outside of its regular trading hours.

• 1 - only data within the regular trading hours is
returned, even if the requested time span falls
partially or completely outside of the RTH.
Getting Started with the TWS Java API 59

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
The realtimeBar() Method

The real time bars are returned via the parameters in the EWrapper interface realtimeBar()
method, whose header is shown below. You’ll notice that the column headings in the returned
data correspond to the parameters in realtimeBar().

Canceling Real Time Bars
Like the other functions in the Java Test Client that we’ve already seen, you can cancel your
real-time bars request by clicking the little “x” on the Real-time results tab.

When you cancel a real-time bars request, we call the EClientSocket method
cancelRealTimeBars(), and the real-time bars for the specified id is canceled:

void realtimeBar(int reqId, long time, double open, double high,
double low, double close, long volume, double wap, int count)

cancelRealTimeBars() Method

public void cancelRealTimeBars(int tickerId)
Getting Started with the TWS Java API 60

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
Chapter 11 - Subscribing to and Canceling
Market Scanner Subscriptions

This chapter describes the methods used for requesting market scanner parameters,
subscribing to a market scanner, and canceling a subscription to a market scanner.

In the Java Test Client, you subscribe to market scanners on the Market Scanner tab, which is
located under the Market Data tab. As you can see in the image below, like most of the other
functions supported in the Java Test Client, you fill in some fields and then click a link to
submit the request.
Getting Started with the TWS Java API 61

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
What Happens When I Subscribe to a Market Scanner?
To subscribe to a market scanner in the Java Test Client, you first select a scan code, then fill
in the rest of the fields, then click the Go link. The Scan Code drop-down menu is shown
below. There are a lot more available scan codes than the image shows, so make sure you
scroll down until you find the right one!

The reqScannerSubscription() Method

When you click the Go link, you are “subscribing” to your selected market scanner (AKA Scan
Code), and you’re also making a call to the reqScannerSubscription() method in our old
friend EClientSocket.

As you may have already guessed, this method sends the values you entered in the Market
Scanner fields as parameters to TWS. The reqScannerSubscription() method header looks
like this:

The parameter subscription is another one of those Java SocketClient Properties and it
contains a bunch of attributes that correspond to data in the market scanner. You look at the
entire list of attributes here.

reqScannerSubscription() receives market scanner results from TWS via the EWrapper
method scannerData() method.

In the Java Test Client, your scan results look like the image on the next page.

public synchronized void reqScannerSubscription(int tickerId,
ScannerSubscription subscription)

Parameter Description
tickerId The Id for the subscription. Must be a unique value. When the

subscription data is received, it will be identified by this Id.
This is also used when canceling the scanner.

subscription Summary of the scanner subscription parameters including
filters.
Getting Started with the TWS Java API 62

https://www.interactivebrokers.com/en/software/api/apiguide/java/scannersubscription.htm

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
The scannerData() Method

All that lovely scanner data that you see is returned from TWS by the EWrapper method
scannerData(), whose header is shown below:

Notice the parameter contractDetails. This is a Java SocketClient Property, very much like the
contract parameter that we saw when we requested market data. contractDetails contains a
lot of different attributes which represent different aspects of the contract you specified. You
can see a list of all of these attributes here.

The scannerDataEnd() Method

There is one additional method in EWrapper used in conjunction with scanner subscriptions:
scannerDataEnd().

This method is called after a full snapshot of a scanner window has been received and serves
as a sort of end tag. It helps define the end of one scanner snapshot and the beginning of the
next.

void scannerData(int reqId, int rank, ContractDetails
contractDetails, String distance, String benchmark, String
projection, String legsStr)
Getting Started with the TWS Java API 63

https://www.interactivebrokers.com/en/software/api/apiguide/java/contractdetailsjava.htm

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
The reqScannerParameters() Method

There is another method in EClientSocket that relates to market scanners:
reqScannerParameters(). This particular method isn’t supported in the Java Test Client, but
we thought we’d mention it here because it can be useful. reqScannerParameters()
receives an XML document that describes the valid parameters that a scanner subscription can
have. So in your own Java application, you can make use of this method to display the XML fiel
that lists all valid scan codes. The reqScannerParameters() method header looks like this:

The EWrapper method scannerParameters() returns the aforementioned XML document in
its only parameter, xml, which is a String.

Cancel Methods
By this time, you may have noticed that the methods that cancel an operation all look similar.
cancelMktData(), cancelHistoricalData(), and so on, are all very simple methods that
typically contain a single integer parameter used to bind it to the original request. And you
also may have noticed that the cancel operation in the Java Test Client is also similar for all of
these functions - you simply close the results tab.

So from here on, we’re going to omit the rest of the cancel methods unless we run across one
that is different from the rest. We leave it to you to peruse the API Reference Guide and look
these methods up yourself!

public synchronized void reqScannerParameters()
Getting Started with the TWS Java API 64

Market Data
Chapter 12: Requesting Contract Data
Chapter 12: Requesting Contract Data
This chapter shows you how to request contract data, including details such as the local
symbol, conid, trading class, valid order types, and exchanges. Up until now, everything we’ve
done in this section of the guide has taken place on the Market Data tab in the Java Test
Client. This chapter introduces you to the Contract Info tab.

What Happens When I Request Contract Data?
To request contract data using the Java Test Client sample application, you'll need to enter
data in the fields on the Contract Details tab under the Contract info tab as pictured below. As
you can see, we’ve designed the sample application with consistency in mind; the entry fields
on the various tabs all look similar.

Just like the other tabs where you entered information in fields then clicked a link to submit
your request, you do the same thing on the Contract details tab. Fill in the fields to define the
desired contract, then click the Query link to submit your request.

And when you click that link, we call the EClientSocket method reqContractDetails().
Getting Started with the TWS Java API 65

Market Data
Chapter 12: Requesting Contract Data
The reqContractDetails() Method

The reqContractDetails() method, whose header is shown below, contains two parameters:
reqID, which is simply the ID of the request, and contract. If you recall from earlier chapters,
the contract parameter contains all the attributes used to describe the requested contract.
And, just as we described earlier, the entry fields you fill in correspond to the attributes in
contract.

In the Java Test Client, your contract details are displayed on a tab below the Contract details
entry fields, as shown below. There are a lot of details so you’ll probably have to use the
vertical scrollbar on the right to view all of it.

public synchronized void reqContractDetails(int reqId, Contract
contract) {
Getting Started with the TWS Java API 66

Market Data
Chapter 12: Requesting Contract Data
The contractDetails() Method

All that contract data is returned from TWS via the Java API EWrapper method
contractDetails(). This method contains two parameters: reqID, the integer that binds this
data to the original request, and ContractDetails, a SocketClient Property that we’ve run into
before that contains all the attributes used to describe the requested contract. So every line of
information in the returned contract details corresponds to an attribute in contractDetails. For
example, the marketName line of data in the returned contract details corresponds to a String
attribute called m_marketName in contractDetails.

By the way, you can see a list of all of the attributes in contractDetails here.

void contractDetails(int reqId, ContractDetails contractDetails)
Getting Started with the TWS Java API 67

https://www.interactivebrokers.com/en/software/api/apiguide/java/contractdetailsjava.htm

Market Data
Chapter 12: Requesting Contract Data
Getting Started with the TWS Java API 68

5
Options

This section describes how the Java API sample application handles option chains and the
exercising of options. An option chain is a list of all options available for a specific security.
Option chains typically list all put and call option strike prices for a given maturity date. .

Here's what you'll find in this section:

• Chapter 13: Viewing Option Chains

• Chapter 14: Exercising Options

Using the Java Test Client is a good way to practice locating and using the reference
information in the API Reference Guide. With the sample program, you can compare the data
in the sample message with the method parameters in the API Reference Guide.
Getting Started with the TWS Java API 69

Options
Chapter 13: Viewing Option Chains
Chapter 13: Viewing Option Chains
These next two chapters look at the option-related actions in the Java Test Client sample
application, which are conveniently grouped together on the Options tab. Actions viewing
option chains and exercising options are included here.

What Happens When I Submit a Request to View Option Chains?
Let's take a look at what happens when you submit a request to view option chains in the Java
Test Client. In this section, we'll show you the methods and parameters behind the sample
application, and how they relate to what you see on the screen.

Just as you did when you performed other tasks in the sample application, you fill in some
entry fields and click a link to view option chains. Go ahead and click on the Options tab and
you’ll see the Option Chains tab with some familiar-looking entry fields.

After you fill in the fields to define the contract for which you want to view option chains and
click Go, the API makes a call to reqMktData(), which you may recall from our previous
chapter on requesting market data. Yes, requesting option chains works the same way.
Getting Started with the TWS Java API 70

Options
Chapter 13: Viewing Option Chains
The reqMktData() Method

Let's take another look the parameters to use for requesting market data, including option
chains. The EClientSocket reqMktData() method header looks like this:

As you can see in the following table, which you’ve seen before, this method has four
parameters:

This table is for illustrative purposes only and is not intended to portray valid API documentation.

Just in our previous request to get market data from TWS, our current request for option
chains sends the parameters in the reqMktData() method. And once again, we pay special
attention to the attributes that are sent with the contract parameter.

For a complete list of ALL of the attributes in the contract class, see the API
Reference Guide.

public synchronized void reqMktData(int tickerId, Contract
contract, String genericTickList, boolean snapshot) {
.
.
.

Parameter Description
tickerId The ticker id. Must be a unique value. When the market data

returns, it will be identified by this tag. This is also used when
canceling the market data.

contract This class contains attributes used to describe the contract.

genericTicklist A comma delimited list of generic tick types.

snapshot Check to return a single snapshot of market data and have the
market data subscription cancel. Do not enter any
genericTicklist values if you use snapshot.
Getting Started with the TWS Java API 71

https://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/contract.htm

Options
Chapter 13: Viewing Option Chains
TWS returns the option chain data, beginning with an expiry of today’s date, on a separate
tabbed area as shown in the screen below:

EWrapper Methods that Return Market Data

The Java API EWrapper interface includes all of the methods that return data to the API in
response to a method being sent. In the case of market data and option chain data, it is
returned from TWS via the following methods in the EWrapper interface:

tickPrice()

void tickPrice(int tickerId, int field, double price, int
canAutoExecute)

tickSize()

void tickSize(int tickerId, int field, int size)
Getting Started with the TWS Java API 72

Options
Chapter 13: Viewing Option Chains
We’ve already looked at most of these tick methods in the market data chapter. The pertinent
method here is tickOptionComputation(), which returns data specific to options. The
underlying price, and the implied volume and greek values in the option chains are all
delivered by tickOptionComputation().

As we’ve mentioned before, there’s a lot you can do with market data requests, so we won’t
get into all of that here. You can see all of the tick types in the API Reference Guide here.

The tick methods are described in the Java EWrapper Methods section of the API
Reference Guide.

tickOptionComputation()

void tickOptionComputation(int tickerId, int field, double
impliedVol, double delta, double optPrice, double pvDividend,
double gamma, double vega, double theta, double undPrice)

tickGeneric()

void tickGeneric(int tickerId, int tickType, double value)

tickString()

void tickString(int tickerId, int tickType, String value)

tickEFP()

void tickEFP(int tickerId, int tickType, double basisPoints, String
formattedBasisPoints, double impliedFuture, int holdDays, String
futureExpiry, double dividendImpact, double dividendsToExpiry)
Getting Started with the TWS Java API 73

https://www.interactivebrokers.com/en/software/api/apiguide/tables/tick_types.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/java_ewrapper_methods.htm

Options
Chapter 14: Exercising Options
Chapter 14: Exercising Options
As long as we’re talking about options, let’s take a look how the Java Test Client sample
application exercises options prior to expiration, and instructs options to lapse. In this chapter,
we'll show you the methods and parameters behind the Options Exercise area of the sample
application

What Happens When I Exercise an Option or Let an Option Lapse?
In the Java Test Client, clickk the Options tab, then click the Option Exercise tab. You’ll see a
screen that looks like the one shown below.

To exercise an option, you first select the account on the left (and if you have an individual
account, you’ll only see your account ID listed). All of your exercisable options are listed in the
main panel of the screen. The action takes place in the panel on the right side of the screen,
where you select the action (Exercise or Lapse), the quantity of the contracts on which to
perform the action, and little check box called Override. Override specifies whether your
setting will override the system's natural action. For example, if your action is "exercise" and
the option is not in-the-money, by natural action the option would not exercise. If you have
override set to "yes" (you select the check box), the natural action would be overridden and
the out-of-the money option would be exercised. When you’re ready to submit your request,
click the Go link.
Getting Started with the TWS Java API 74

Options
Chapter 14: Exercising Options
Now we make a call to the EClientSocket method exerciseOptions(), which is shown below,
and which sends the selections and values you entered to TWS.

The exerciseOptions() Method

And here are the descriptions of all of those parameters, which you can see correspond to your
selections and entries on the Option Exercise tab of the sample application. And once again,
we see our old friend contract, whose many attributes pass information about the contract to
TWS.

Tables are for illustrative purposes only and are not intended to represent valid API information.

When you select Exercise as the action, the exerciseAction parameter has a value of 1. When
you select Lapse as the action, exerciseAction has a value of 2. In this case, no values are
returned by the EWrapper interface, as is the case with many other functions in the TWS Java
API.

And that’s all there is to it!

public synchronized void exerciseOptions(int tickerId, Contract
contract, int exerciseAction, int exerciseQuantity, String account,
int override)

Parameter Description
tickerId The Id for the exercise request

contract This class contains attributes used to describe the contract.

exerciseAction This can have two values:

• 1 = exercise

• 2 = lapse

exerciseQuantity The number of contracts to be exercised or lapsed.

account For institutional orders. Specifies the IB account.

override Specifies whether your setting will override the system's
natural action. For example, if your action is "exercise" and the
option is not in-the-money, by natural action the option would
not exercise. If you have override set to "yes" the natural
action would be overridden and the out-of-the money option
would be exercised. Values are:

• 0 = do not override

• 1 = override
Getting Started with the TWS Java API 75

Options
Chapter 14: Exercising Options
Getting Started with the TWS Java API 76

6
Orders and Executions

This section describes how the Java API sample application handles orders. We'll show you the
methods, events and parameters behind such trading tasks as placing and canceling orders,
and viewing open orders and executions.

Here's what you'll find in this section:

• Chapter 15: Placing and Canceling an Order

• Chapter 16: Extended Order Attributes

Using the Java Test Client is a good way to practice locating and using the reference
information in the API Reference Guide. With the sample program, you can compare the data
in the sample message with the method parameters in the API Reference Guide.
Getting Started with the TWS Java API 77

Orders and Executions
Chapter 15: Placing and Canceling an Order
Chapter 15: Placing and Canceling an Order
These next few chapters look at the order-related actions in the Java Test Client sample
application, which are grouped together under the Trading tab. Actions such as placing and
canceling an order, applying extended order attributes, placing volatility and scale orders, and
even IBAlgo orders are included here.

As you can see, all of the order-related actions you can take are represented by links on the
right side of the sample application screen. Live orders and completed orders (Trade Log) are
also displayed on the Trading tab.

The Order Dialog

First let’s take a look at the Order Dialog, which is where you’ll do most of your order setup in
the Java Test Client. To place an order using the Java Test Client, the first thing you have to
do is click the Place New Order link. This opens the Order dialog.
Getting Started with the TWS Java API 78

Orders and Executions
Chapter 15: Placing and Canceling an Order
The Order dialog contains several tabs, each of which contains entry fields and selections that
pertain to orders:

• Contract - This is where you define the contract you want to trade.

• Order - This is where you define the basic order parameters, including action, quantity
and order type.

• Misc - This tab contains a variety of optional settings that are collectively called
“extended order attributes.”

• Advisor - This tab is for Advisors, who use the entry fields to create orders and allocate
shares among multiple clients. We talk about this is the Java API Getting Started Guide
for Advisors.

• Volatility - This tab contains the fields you need to place a volatility order. These order
attributes are also considered to be “extended order attributes.” Volatility orders are
beyond the scope of this guide, so we won’t be discussing them in this chapter.

• Scale - This tab contains the fields you need to place a scale order. These order
attributes are also considered to be “extended order attributes.” Scale orders are
beyond the scope of this guide, so we won’t be discussing them.

• IB Algo - This tab contains a variety of entry fields that are used to place IB Algo
orders. These orders are very advanced and so we won’t be discussing them.
Getting Started with the TWS Java API 79

https://www.interactivebrokers.com/download/GettingStartedJavaAPIAdvisors.pdf
https://www.interactivebrokers.com/download/GettingStartedJavaAPIAdvisors.pdf

Orders and Executions
Chapter 15: Placing and Canceling an Order
In addition to the aforementioned tabs, there are also links to Transmit Order, Check Margin
and Close (which simply closes the Order dialog).

By the way, if you’re curious about which part of the Java API contains the code for the Order
dialog, it’s the TicketDlg java class, which is part of the apidemo package.

What Happens When I Place an Order?
In this section, we'll show you the methods and parameters responsible for communicating
your order to TWS.

Of course, the first thing you have to do when you want to place a new order is click the Place
New Order link located on the right side of the Order tab in the sample application. The Order
dialog opens to the Contract tab.

The image below highlights the fields on the Contract tab that you use to identify the contract
you want to trade.
Getting Started with the TWS Java API 80

Orders and Executions
Chapter 15: Placing and Canceling an Order
The Order tab is where you define the action of the trade (BUY or SELL), the quantity to trade,
and the order type, among other things. The image below highlights the fields on the Order
tab as well as the Transmit Order link.

For simple orders, you’re probably only going to fill in the fields on the Contract and Order
tabs. So to place an order, first define the contract on the Contract tab, then define the order
on the Order tab, then click Transmit Order. Simple!

When you click that link, we call the EClientSocket method placeOrder(), which sends your
entries in all those fields to TWS as its parameters.

The placeOrder() Method

The EClientSocket placeOrder() method header is shown below.

Once again, you’ll notice that we’re using a couple of those Java SocketClient Properties to
send contract- and order-related attributes to TWS.

public synchronized void placeOrder(NewContract contract, NewOrder
order)
Getting Started with the TWS Java API 81

Orders and Executions
Chapter 15: Placing and Canceling an Order
Tables are for illustrative purposes only and are not intended to represent valid API information.

The contract and order classes contain parameters that correspond to the Contract and Order
tabs in the Order dialog that you filled in. We’re already familiar with contract but what kinds
of things are included in the order class? Well, it contains attributes such as the String
m_action, which is set to BUY, SELL or SSHORT depending on what kind of trade you want to
execute; and another String m_orderType which, as you might expect, defines the order type
(Market, Limit, Stop, and so on). There are many other attributes in the order class, and you
can see the full list here. The attributes very neatly correspond to the fields on the Order tab.

In the Java Test Client, the Trading tab displays each of your live, open orders in a table at the
top of the screen, and your completed orders in a Trade Log table, as shown below.

Parameter Description
id The order Id. You must specify a unique value. When the order

status returns, it will be identified by this tag. This tag is also
used when canceling the order.

contract This class contains attributes used to describe the contract.

order This structure contains the details of the order. Note: Each
client MUST connect with a unique clientId.
Getting Started with the TWS Java API 82

https://www.interactivebrokers.com/en/software/api/apiguide/java/order.htm

Orders and Executions
Chapter 15: Placing and Canceling an Order
The orderStatus() Method

After you place your order, TWS responds by sending back the EWrapper orderStatus()
method, which is shown below.

You probably notice that some of the columns in the Live Orders table in the sample
application correspond to the parameters in orderStatus(). These include the Order ID,
which matches the order status to the correct order; and the Perm ID, which is an internal ID
used by TWS to identify the order. orderStatus() also returns some other fields including
some related to price where applicable, and the current status of your order.

Order statuses include:

• Submitted - This means that your order has been accepted at the order destination and
is working in the system.

• Cancelled - This means that the balance of your order has been confirmed canceled by
the IB system.

• Filled - This means that your order has been filled.

There are other statuses of course, and you can see these in the API Reference Guide.

You might also have noticed that the other columns in the Live Orders table correspond to a
few of the attributes in the contract and order classes.

orderStatus() is also sent by TWS whenever the status of your order changes. So when your
order is filled, for example, you’ll get another orderStatus() from TWS and the Status of that
order in the Live Orders table will update dynamically.

Order IDs
One very important thing to remember when you’re placing orders from your own API
application is that the order ID number must be greater than the previously used
numbers. For example, if you place an order with an Order ID of 11, the next order you place
should have an Order ID of at least 12. If you forget to do this, your order won’t go through.

void orderStatus(int orderId, String status, int filled, int
remaining, double avgFillPrice, int permId, int parentId, double
lastFillPrice, int clientId, String whyHeld);
Getting Started with the TWS Java API 83

https://www.interactivebrokers.com/en/software/api/apiguide/java/orderstatus.htm

Orders and Executions
Chapter 15: Placing and Canceling an Order
Modifying an Order
In the Java Test Client, you can modify an existing open order by clicking on an open order
displayed in the Live Orders table, then clicking the Modify Selected Order link.

As you can see in the image below, when you click that link, the Order dialog opens to the
Order tab, which means you can modify any of the available settings on that tab, then
transmit the modified order. By the way, in the Java API, you’re simply resending the
placeOrder() method to TWS, which will respond by sending back orderStatus().
Getting Started with the TWS Java API 84

Orders and Executions
Chapter 15: Placing and Canceling an Order
Attaching an Order to an Existing Order
In the Java Test Client, you can modify an existing open order by clicking on an open order
displayed in the Live Orders table, then clicking the Attach New Order to Selected Order
link.

As you can see in the image below when you click that link, the Order dialog opens to the
Order tab, which means you can modify any of the available settings on that tab, then
transmit the order you want to attach to the selected open order. For example, you might
want to attach a Trailing Stop order to an existing order by selecting TRAIL as the order type.

By the way, in the Java API, you’re simply sending another placeOrder() method to TWS
with fresh order parameters, and TWS responds, as always. by sending back orderStatus().
Getting Started with the TWS Java API 85

Orders and Executions
Chapter 15: Placing and Canceling an Order
Checking Post-Trade Margin Requirements
There’s another interesting feature that we’ve included in the Java Test Client: Check Margin.
If you enter your order parameters in the Order dialog, you’ll notice a Check Margin link at the
bottom of the dialog. Click this link AFTER you enter all of your order parameters (including
contract and order settings on those respective tabs), and you will get a popup that gives you
a preview of what your margin requirements will be AFTER your trade is executed. You can see
what your Equity with Loan value, initial and maintenance margin values will be if your trade
goes through.

When you click the Check Margin link, you’re actually sending the placeOrder() method to
TWS with one of the attributes of the order class, the boolean m_whatIf, set to true. This
attribute tells TWS to return pre-trade margin requirements.

And it’s the EWrapper method, openOrder(), that returns the margin requirements in one of
ITS parameters, another SocketClient Property called orderState.
Getting Started with the TWS Java API 86

Orders and Executions
Chapter 15: Placing and Canceling an Order
Canceling an Order
You can cancel any order that has not yet been filled. In the Java Test Client, click an open
order to select it, then click the Cancel Selected Order link.

When you click this link, the API calls the EClientSocket cancelOrder() method, and the
order associated with the specified ID is canceled. cancelOrder() has a single parameter, id,
which matches the cancel instruction to the correct open order.

The header for the EClientSocket method cancelOrder() is shown below.

Once you cancel your order, the status of the order displayed in the Live Orders table on the
Trading tab of the sample application changes to Cancelled. This is because your order status
changed when you canceled it, and the EWrapper method orderStatus() is called whenever
your order status changes.

public synchronized void cancelOrder(int id)
Getting Started with the TWS Java API 87

Orders and Executions
Chapter 16: Extended Order Attributes
Chapter 16: Extended Order Attributes
This chapter discusses how to apply extended, or non-essential, order attributes to your order.
This sample action is different from many of the others we've looked at, as the extended order
attributes for the Java API are actually included in the order java class. For ease of use, we
have created five separate tabs in the Order dialog in which you can assign values to the
extended order attributes. These are shown in the sections that follow.

The important thing to remember is that the entries and selections you make in these tabs are
all attributes of the order class, which is sent to TWS as a parameter of placeOrder() then
you transmit an order.

Misc

This tab contains a variety of optional settings, such as Good after and Good until, Percent
Offset, Fill Outside RTH, All-or-none, and many others.

Advisor

This tab is for Advisors, who use the entry fields to create orders and allocate shares among
multiple clients. We talk about this is the Java API Getting Started Guide for Advisors.
Getting Started with the TWS Java API 88

https://www.interactivebrokers.com/download/GettingStartedJavaAPIAdvisors.pdf

Orders and Executions
Chapter 16: Extended Order Attributes
Volatility

This tab contains the fields you need to place a volatility order. These order attributes are also
considered to be “extended order attributes.” Volatility orders are beyond the scope of this
guide, so we won’t be discussing them in this chapter except to point out that the parameters
on this tab can be found in the order class. For example, the Hedge order type drop-down
pictured below allows you to select an order type to instruct TWS to submit a delta neutral
trade on full or partial execution of the VOL order. This field corresponds to a String attribute
m_deltaNeutralOrderType attribute in the order class.
Getting Started with the TWS Java API 89

Orders and Executions
Chapter 16: Extended Order Attributes
Scale

This tab contains the fields you need to place a scale order. These order attributes are also
considered to be “extended order attributes.” Scale orders are beyond the scope of this guide,
so we won’t be discussing them except to point out that the parameters on this tab can be
found in the order class. For example, the Auto-reset check box pictured below corresponds to
a boolean attribute m_scaleAutoReset in the order class.

For a complete list of ALL of the attributes in the order class, see the API
Reference Guide.
Getting Started with the TWS Java API 90

https://www.interactivebrokers.com/en/software/api/apiguide/java/order.htm
https://www.interactivebrokers.com/en/software/api/apiguide/java/order.htm

Orders and Executions
Chapter 16: Extended Order Attributes
IB Algo

This tab contains a variety of entry fields that are used to place IB Algo orders. These orders
are very advanced and so we won’t be discussing them in too much detail. However, we would
like to introduce you briefly to two attributes that are important to IB Algo orders.

If you look at all of the attributes of the order class, you will notice that many of the IBAlgo
parameters included on the IB Algo tab pictured below are not included as specifically named
attributes. There are two String attributes in the order class that support IB Algo orders:

• m_algoStrategy, which contains the actual name of the IB Algo order type (called a
“strategy,” some of these include AD for Accumulate/Distribute, PctVol for Percentage of
Volume, and so on).

• m_algoParams, which is essentially a container for IB Algo order parameters and their
values in the form:

m_algoParams.add(new TagValue("maxPctVol","0.01"));

So the entry fields on the IB Algo tab in the Order dialog that you can’t find in the order class
are created using the m_algoParams attribute in the order class.
Getting Started with the TWS Java API 91

Orders and Executions
Chapter 16: Extended Order Attributes
You can read more about programming IB Algo orders, including a list of accepted
values for the m_algoParams in the API Reference Guide.

This concludes our brief introduction to extended order attributes. In the next chapter, you’ll
learn how to retrieve all your account and portfolio information from TWS.
Getting Started with the TWS Java API 92

https://www.interactivebrokers.com/en/software/api/apiguide/tables/ibalgo_parameters.htm

7
Account and Portfolio
Information

This chapter describes how to view all of your account and portfolio information in the Java
Test Client.

• Chapter 17: Retrieving Account and Portfolio Information

In addition to the tasks described in this chapter, the Java API sample
application also includes a few more advanced functions, including the
ability to place spread, EFP and Delta-Neutral orders. For more
information on these and other advanced capabilities of the Java API,
see our API Reference Guide, available from the Documentation page

in our Traders’ University.
Getting Started with the TWS Java API 93

https://www.interactivebrokers.com/en/software/api/api.htm

Account and Portfolio Information
Chapter 17: Retrieving Account and Portfolio Information
Chapter 17: Retrieving Account and Portfolio
Information

Retrieving your account information from TWS is easy in the Java Test Client. In fact, we’ve
provided a dedicated tab for just that purpose! It’s called Account Info. The Account Info tab
contains several tabs, each of which displays a different set of data from your account. By the
way, this is a lot of the same information that you can view in the Account Window in TWS.

To retrieve your Account Information, select your Account ID from the top part of the screen
(and if you only have a single, individual account, you’ll only see one Account ID listed), then
click the Subscribe link located on the right side of the screen. The various tabs on the
Account Info screen will fill up with your account and portfolio information from TWS. The
following image shows the Portfolio
Getting Started with the TWS Java API 94

Account and Portfolio Information
Chapter 17: Retrieving Account and Portfolio Information
What Happens When I Retrieve My Account Information?
When you click the Subscribe link, the API sends the EClientSocket method
reqAccountUpdates() to TWS.

The reqAccountUpdates() Method

As you can see, there are only two parameters in this method. subscribe is a boolean that,
when set to true, tells TWS to send the account information along. The other parameter sends
the account code to TWS so that it knows the correct account.

The account information is provided in three different EWrapper methods:

• updateAccountTime()

• updateAccountValue()

• updatePortfolio()

updateAccountTime() has a single parameter, the String timeStamp, which indicates the
last time the account information was updated.

public synchronized void reqAccountUpdates(boolean subscribe,
String acctCode)
Getting Started with the TWS Java API 95

Account and Portfolio Information
Chapter 17: Retrieving Account and Portfolio Information
updateAccountValue() sends the actual account values that you see on the different tabs of
the Account Info screen in the sample application.

As you can see from the list of parameters below, the actual account values are sent by the
key, a String that indicates each type of account value; and value, another String that assigns
the correct value to the account value type.

updatePortfolio() is responsible for sending your current portfolio information from TWS.

As you can see from the method header shown above, there are several parameters in
updatePortfolio(), including our old friend contract, which sends the information about each
contract in your portfolio, as well as other numerical values.

Desubscribing

When you trade, your account information and portfolio will change of course, and as long as
the Java Test Client is still connected to TWS and you are still “subscribed” to account
information, your account info will update in the sample application.

If you no longer want to receive all that account and portfolio information, you can click the
Desubscribe link located in the same place as the Subscribe link, and you won’t get any more
account information updates from TWS.

void updateAccountValue(String key, String value, String currency,
String accountName)

Parameter Description
key A string that indicates one type of account value. There is a

long list of possible keys that can be sent, here are just a few
examples:

• CashBalance - account cash balance

• DayTradesRemaining - number of day trades left

• EquityWithLoanValue - equity with Loan Value

• InitMarginReq - current initial margin requirement

• MaintMarginReq - current maintenance margin

• NetLiquidation - net liquidation value

value The value associated with the key.

currency String that defines the currency type, in case the value is a
currency type.

account String that indicates the account.

void updatePortfolio(Contract contract, int position, double
marketPrice, double marketValue, double averageCost, double
unrealizedPNL, double realizedPNL, String accountName)
Getting Started with the TWS Java API 96

Account and Portfolio Information
Chapter 17: Retrieving Account and Portfolio Information
This concludes our discussion of the Java Test Client sample application for individual
accounts. The next chapter describes the Java API examples that you can download from our
website.
Getting Started with the TWS Java API 97

Account and Portfolio Information
Chapter 17: Retrieving Account and Portfolio Information
Getting Started with the TWS Java API 98

8
Where to Go from Here

If you've come this far and actually read the book, you now have a pretty decent grasp on
what the Java API can do, and how to make it do some of the things you want. Now we give
you a bit more information about where to find additional helpful outside resources you can
use to help you move forward.

This section contains the following chapters:

• Chapter 25 - Additional Resources
Getting Started with the TWS Java API 99

Where to Go from Here
Chapter 25 - Additional Resources
Chapter 25 - Additional Resources
There are many resources out there that will be adequate in getting you where you need to
go. If you have some books or places that you like, feel free to stick with them. The following
are the resources we find most helpful, and perhaps they'll be good to you, too!

Help with Java Programming
While this book is intended for users with Java programming experience, we understand that
even experienced Java programmers need help every once in a while.

The best place to go to find additional help with all things Java is the Oracle web site. Just type
http://www.oracle.com/technetwork/java/index.html in your browser's address line and check
out the list of links on that page. There are many online resources available for Java
programmers, including documentation, tutorials, and code samples.

If you simply want to look up information about the actual Java API (as opposed to our TWS
Java API), you can go directly to Sun's API Specification page. There you will find links to the
javadocs for all of Sun’s different API versions.

There are literally hundreds of additional printed and web-based resources for Java
programmers. We encourage you to investigate these on your own.

Help with the Java API
For help specific to the Java TWS API, the one best place to go, really the ONLY place to go, is
the Interactive Brokers website. Once you get there, you have lots of resources. Just type
www.interactivebrokers.com in your browser's address line. Now that you're there, let me tell
you where you can go.

As of this writing in October 2013, the IB website looks as I'm
describing. IB has a tendency to revamp the look and organization
of their site every year or two, so have a little patience if it looks
slightly different from what's described here.

The API Reference Guide

The API Reference Guide includes sections for each API technology, including the DDE for
Excel. The upper level topics which are shown directly below the main book are applicable
across the board to all or multiple platforms.

To access the API Reference Guide from the IB web site, select Documentation from the
Education menu, then click the Users’ Guides link in the menu on the left, then click the
Application Programming Interface (API). Click Online API Reference Guide, then
click the Online button to open the online API Reference Guide.
Getting Started with the TWS Java API 100

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/api-141528.html
http://www.interactivebrokers.com

Where to Go from Here
Chapter 25 - Additional Resources
The API Beta and API Production Release Notes

The beta notes are in a single page file, and include descriptions of any new additions to the
API (all platforms) that haven't yet been pushed to production. The API Release Notes opens
an index page that includes links to all of the past years' release notes pages. The index
provides one-line titles of all the features included in each release.

To access these notes from the IB web site, select Documentation from the Education menu,
then click the Application Programming Interface link and click either the Production
Notes or Beta Notes buttons to view those release notes.

The TWS API Webinars

IB hosts free online webinars through WebEx to help educate their customers and other
traders about the IB offerings. They present the API webinar about once per month, and have
it recorded on the website for anyone to listen to at any time.

• To register for the API webinar, from the IB web site click Education, then select
Webinars. Click the Live Webinars button, then click the API tab.

• To view the recorded version of the API webinar, from the Live Webinars page click
the Watch Previously Recorded Webinars button. Links to recorded versions of
previously recorded webinars are listed on the page.

API Bulletin Board

You can trade ideas and send out pleas for help via the IB customer base accessible through
both the IB Bulletin Board. The bulletin board includes a thread for the API, and thus provides
an ongoing transcript of questions and answers in which you might find the answer to your
question.

To view or participate in the IB Bulletin Board, go to the Education menu and click Bulletin
Boards. Click the Launch IB Discussion Forum button to access all of our bulletin boards,
including the TWS API bulletin board.

IB Customer Service

IB customers can also call or email customer service if you can't find the answer to your
question. However, IB makes it clear that the APIs are designed for use by programmers and
that their support in this area is limited. Still, the customer service crew is very knowledgeable
and will do their best to help resolve your issue. Simply send an email to:

api@interactivebrokers.com

IB Features Poll

The IB Features Poll lets IB customers submit suggestions for future product features, and
vote and comment on existing suggestions.

From the IB web site, click Products & Services, then select New Features Poll. Suggestions
are listed by category; click a plus sign next to a category to view all feature suggestions for
that category. To submit a suggestion, click the Submit Suggestion link.
Getting Started with the TWS Java API 101

Where to Go from Here
Chapter 25 - Additional Resources
Getting Started with the TWS Java API 102

Index

A
account information 7-94, 7-95

desubscribing from 7-96
additional resources 8-100
API

reasons for using 2-18
API beta notes 8-101
API connection to TWS

enabling 4-35
API Reference Guide 8-100
API release notes 8-101
API software

downloading 3-23
installing 3-26

API support email 8-101
API webinars 8-101
apidemo 4-33
apidemo.util 4-33
attaching orders to existing
orders 6-85

C
cancelHistoricalData() 4-57, 4-60
canceling historical data 4-53, 4-57
canceling market data 4-40, 4-47
canceling market depth 4-49, 4-52
canceling market scanner
subscriptiions 4-61
canceling orders 6-78, 6-87
canceling real time bars 4-58, 4-60
cancelMktData() 4-48
cancelMktDepth() 4-52
cancelOrder() 6-87
Check Margin 6-86
com.ib.client 4-33
Connect 4-36
connecting the Java Test client to
TWS 4-32
connecting to TWS 4-36
contract data 4-65
contractDetails() 4-67
customer forums 8-101
customer service 8-101

D
DDE for Excel API

additional resources 8-100
preparing to use 3-21

deep market data 4-50
Disconnect button 4-38
disconnecting from TWS 4-38
document conventions 1-11

downloading API software 3-23

E
EClientSocket constructor 1-11
edisconnect() 4-39
enable API connection in TWS 4-35
exercise an option 5-74
exerciseOptions() 5-75
exerciseOptions() parameters 5-75
exercising options 5-74
Extended order attribrutes 6-88

F
Features Poll 8-101
footnotes and references 1-9
framework of Java Test Client 4-32
frozen market data 4-46

H
Historical Data 4-54
historical data 4-53
historicalData() 4-56
how to use this book 1-8

I
IB bulletin boards 8-101
IB Customer Service 8-101
icons used in this book 1-10
installing API software 3-26
introduction 1-7, 4-31, 5-69, 6-77, 7-93

J
J2SE Development Kit and
NetBeans IDE Bundle 3-22
Java API, help with 8-100
Java IDE, downloading 3-22
Java JDK, downloading 3-22
Java programming help 8-100
Java Test Client

connecting to TWS 4-32
framework 4-32

Java Test Client main window 4-32

L
let an option lapse 5-74
logging in to TWS 4-33

M
margin requirements after a
trade 6-86
market data 4-40

canceling 4-47
EWrapper methods 4-44, 5-72
frozen 4-46
snapshot 4-47

market data returned 4-44
Market Depth 4-50
market depth 4-49
market scanners 4-61, 4-62
mktDataType() 4-46
modifying orders 6-84

N
Netbeans 3-22

O
option chains 5-70
options 5-74

exercising 5-74
Order dialog 6-78
order IDs 6-83
orders 6-78

attaching orders 6-85
modifying 6-84

orderStatus() 6-83
organization of this book 1-8
override option 5-74

P
packages in the Java API 4-33
Place Order button 6-80
placeOrder() 6-81
placeOrder() parameters 6-82
placing orders 6-78
preparing to use the DDE for Excel
API 3-21

R
real time bars 4-58
real-time account monitoring, in
TWS 2-17
realtimeBar() 4-60
reasons for using an API 2-18
reqAccountUpdates() 7-95
reqContractDetails() 4-66
reqHistoricalData() 4-54
reqMktData() 4-42, 5-71
reqMktData() parameters 4-42,
5-71, 7-96
reqMktDepth() 4-50
reqMktDepth() parameters 4-50,
4-54, 4-59, 4-62
reqRealTimeBars() 4-59
Getting Started with the TWS Java API 103

Index
reqScannerParameters() 4-64
reqScannerSubscription() 4-62
request option chains 5-70
Request real-time bars 4-59
Request Top Market Data 4-41
requesting contract data 4-65
requesting historical data 4-53
requesting market data 4-40, 4-41
requesting market depth 4-49
requesting real time bars 4-58
resources, for Java programming help 8-100
retrieving account information 7-95

S
Sample dialog

market data fields 4-43
scannerData() 4-63
scannerDataEnd() 4-63
snapshot 4-47
subscribing to market scanner subscriptions 4-61
subscribing to market scanners 4-62

T
tickEFP() 4-45, 5-73
tickGeneric() 4-45, 5-73
tickOptionComputation() 4-45, 5-73
tickPrice() 4-44, 5-72

tickSize() 4-44, 5-72
tickString() 4-45, 5-73
Trader Workstation

overview 2-14
trading window 2-16
TWS

logging in 4-33
real-time account monitoring in 2-17

TWS and the API 2-18
TWS login box options 4-35
TWS Order Ticket 2-16
TWS overview 2-14, 2-16
TWS Quote Monitor 2-16

U
updateAccountTime() 7-95
updateAccountValue() 7-96
updateMktDepth() 4-52
updateMktDepthL2() 4-52
updatePortfolio() 7-96
using this book 1-8

document conventions 1-11
icons 1-10
organization 1-8

V
viewing option chains 5-70
Getting Started with the TWS Java API 104

	Introduction
	How to Use this Book
	Organization
	Part 1: Introducing the TWS Java API
	Part 2: Preparing to Use the TWS Java API
	Part 3: Getting to Know the Java Test Client
	Part 4: Where to Go from Here

	Footnotes and References
	Icons
	Document Conventions

	TWS and the Java API
	Chapter 1 - What is Trader Workstation?
	What Can You Do with TWS?
	A Quick Look at TWS
	The TWS Quote Monitor
	The Order Ticket
	Real-Time Account Monitoring

	Chapter 2 - Why Use the TWS Java API?
	TWS and the API
	Available API Technologies
	An Example

	Preparing to Use the Java API
	Chapter 3 - Download the Java JDK and IDE
	Chapter 4- Download the API Software
	Chapter 5 - Connect to the Java Test Client
	Set Up the Java Test Client

	Market Data
	Chapter 6 - Connect the Java Test Client to TWS
	Java API Basic Framework
	Log Into TWS
	About Logging In

	Enable the API Connection through TWS
	Connect to TWS
	What Happens When I Click Connect?

	Disconnecting from a Running Instance of TWS

	Chapter 7: Requesting and Canceling Market Data
	What Happens When I Click the Request Top Market Data Link?
	The reqMktData() Method
	EWrapper Methods that Return Market Data

	Getting Frozen Market Data
	Getting a Snapshot of Market Data
	Canceling Market Data

	Chapter 8 - Requesting and Canceling Market Depth
	What Happens When I Click the Request Deep Market Data Link?
	The reqMktDepth() Method
	The updateMktDepth() and updateMktDepthL2() Methods

	Canceling Market Depth

	Chapter 9 - Requesting and Canceling Historical Data
	What Happens When I Click the Historical Data Link?
	The reqHistoricalData() Method
	The historicalData() Method

	Canceling Historical Data

	Chapter 10 - Requesting and Canceling Real Time Bars
	What Happens When I Click the Request real-time bars Link?
	The reqRealTimeBars() Method
	The realtimeBar() Method

	Canceling Real Time Bars

	Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
	What Happens When I Subscribe to a Market Scanner?
	The scannerData() Method
	The scannerDataEnd() Method
	The reqScannerParameters() Method

	Cancel Methods

	Chapter 12: Requesting Contract Data
	What Happens When I Request Contract Data?
	The reqContractDetails() Method
	The contractDetails() Method

	Options
	Chapter 13: Viewing Option Chains
	What Happens When I Submit a Request to View Option Chains?
	The reqMktData() Method
	EWrapper Methods that Return Market Data

	Chapter 14: Exercising Options
	What Happens When I Exercise an Option or Let an Option Lapse?
	The exerciseOptions() Method

	Orders and Executions
	Chapter 15: Placing and Canceling an Order
	What Happens When I Place an Order?
	The placeOrder() Method
	The orderStatus() Method

	Order IDs
	Modifying an Order
	Attaching an Order to an Existing Order
	Checking Post-Trade Margin Requirements
	Canceling an Order

	Chapter 16: Extended Order Attributes
	Misc
	Advisor
	Volatility
	Scale
	IB Algo

	Account and Portfolio Information
	Chapter 17: Retrieving Account and Portfolio Information
	What Happens When I Retrieve My Account Information?
	The reqAccountUpdates() Method
	Desubscribing

	Where to Go from Here
	Chapter 25 - Additional Resources
	Help with Java Programming
	Help with the Java API
	The API Reference Guide
	The API Beta and API Production Release Notes
	The TWS API Webinars
	API Bulletin Board
	IB Customer Service
	IB Features Poll

