

Getting Started with the TWS C++ API
September 2014
Supports TWS API Release 9.71

© 2014 Interactive Brokers LLC. All rights reserved.

Sun, Sun Microsystems, the Sun Logo and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. Excel,
Windows and Visual Basic (VB) are trademarks or registered trademarks of the
Microsoft Corporation in the United States and/or in other countries. TWS Javahelp
version 013, March 25, 2008.

Any symbols displayed within these pages are for illustrative purposes only, and are not
intended to portray any recommendation.

Contents

1 Introduction ...7

How to Use this Book ...8

Organization ..8

Part 1: Introducing the TWS C++ API ..8

Part 2: Preparing to Use the TWS C++ API ...8

Part 3: Market Data ...9

Part 4: Orders and Executions...9

Part 5: Additional Tasks ...9

Part 6: Where to Go from Here..9

Footnotes and References ..9

Icons .. 10

Document Conventions.. 10

2 TWS and the C++ API...13

Chapter 1 - What is Trader Workstation?... 14

What Can You Do with TWS? .. 16

A Quick Look at TWS... 17

The TWS Quote Monitor ... 17

The Order Ticket ... 17

Real-Time Account Monitoring ... 17

Chapter 2 - Why Use the TWS C++ API?... 18

TWS and the API .. 19

Available API Technologies ... 20

An Example ... 20

3 Preparing to Use the C++ API ..21

Chapter 3 - Install an IDE ... 22

Chapter 4 - Download the API Software .. 23

Chapter 5 - Connect to the C++ Sample Application... 27

Running the C++ API Sample Application... 27

Running the C++ API Sample Application from Visual Studio 2008 27
Getting Started with the TWS C++ API i

Contents
In case of errors: .. 29

What’s Next ... 30

4 Market Data..31

Chapter 6 - Connecting to TWS.. 32

C++ Sample Application .. 32

Source Code .. 33

A Look at client2Dlg.cpp... 33

What Happens When I Click the Connect Button? .. 34

OnConnect()... 35

Disconnecting from a Running Instance of TWS .. 36

Chapter 7: Requesting and Canceling Market Data ... 37

What Happens When I Click the Req Mkt Data Button?..................................... 38

OnReqMktData() ... 39

About the Request Market Data Dialog ... 39

reqMktData().. 40

C++ EWrapper Functions that Return Market Data................................... 42

Getting a Snapshot of Market Data.. 45

Canceling Market Data... 45

cancelMktData().. 46

Chapter 8 - Requesting and Canceling Market Depth .. 47

What Happens When I Click the Req Mkt Depth Button?................................... 48

OnReqMktDepth() ... 49

The reqMktDepth() Method... 49

C++ EWrapper Functions that Return Market Depth................................. 50

Canceling Market Depth... 52

The cancelMktDepth() Method... 53

Chapter 9 - Requesting and Canceling Historical Data ... 54

What Happens When I Click the Historical Data Button? 55

OnReqHistoricalData() ... 56

The reqHistoricalData() Method ... 57

C++ EWrapper Functions that Return Historical Data 58

Historical Data Limitations ... 60

Canceling Historical Data ... 61

The cancelHistoricalData() Method... 61

Chapter 10 - Requesting and Canceling Real Time Bars... 62
Getting Started with the TWS C++ API ii

Contents
What Happens When I Click the Real Time Bars Button? 63

OnReqRealTimeBars() .. 63

The reqRealTimeBars() Method ... 64

C++ EWrapper Functions that Return Real Time Bars............................... 65

Canceling Real Time Bars... 66

The cancelRealTimeBars() Method ... 67

Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions 68

What Happens When I Click the Market Scanner Button?.................................. 69

OnMarketScanner() ... 69

Requesting Scanner Parameters .. 70

Subscribing to a Market Scanner ... 71

C++ EWrapper Functions that Return Market Scanner Results 72

The scannerDataEnd() Function... 73

Cancel a Market Scanner Subscription ... 74

Chapter 12: Requesting Contract Data.. 75

What Happens When I Click the Req Contract Data Button? 76

OnReqContractDetails().. 76

The reqContractDetails() Method ... 77

C++ EWrapper Functions that Return Contract Details 78

The contractDetailsEnd() Function ... 78

5 Orders and Executions..81

Chapter 13: Placing and Canceling an Order .. 82

What Happens When I Place an Order? .. 83

OnPlaceOrder() ... 84

The placeOrder() Method.. 84

C++ EWrapper Functions that Return Order Data.. 86

Open Order Information and Contract Details .. 87

Extended Attributes ... 89

Execution Details... 89

Order State Information ... 90

The status Parameter... 91

Canceling an Order ... 92

The cancelOrder() Method .. 93

Modifying an Order ... 93

Requesting "What-If" Data before You Place an Order...................................... 93
Getting Started with the TWS C++ API iii

Contents
Placing Combo Orders ... 94

Combo Legs Processing.. 96

Placing Algo Orders... 97

Algo Order Processing .. 99

Chapter 14: Exercising Options.. 100

What Happens When I Click the Exercise Options Button? 101

OnExerciseOptions() .. 101

The exerciseOptions() Method... 102

Chapter 15: Extended Order Attributes ... 103

What Happens When I Click the Extended Button? .. 104

Chapter 16: Requesting Open Orders ... 105

Running Multiple API Sessions .. 105

The Difference between the Three Request Open Orders Buttons..................... 106

What Happens When I Click the Req Open Orders Button?.............................. 106

OnReqOpenOrders() .. 107

C++ EWrapper Functions that Return Open Order Data 107

What Happens When I Click the Req All Open Orders Button? 108

OnReqAllOpenOrders()... 108

What Happens When I Click the Req Auto Open Orders Button? 109

OnReqAutoOpenOrders().. 109

The reqAutoOpenOrders() Method ... 109

Chapter 17: Requesting Executions .. 110

What Happens When I Click the Req Executions Button? 110

OnReqExecutions() .. 111

The reqExecutions() Method ... 111

C++ EWrapper Functions that Return Execution Details.......................... 113

execDetailEnd() .. 114

6 Additional Tasks ... 115

Chapter 18 - Requesting the Current Time .. 116

What Happens When I Click the Current Time Button? 116

OnReqCurrentTime() ... 116

The reqCurrentTime() Method ... 117

C++ EWrapper Functions that Return the Current Time 117

Chapter 19: Requesting the Next Order ID .. 118

What Happens When I Click the Req Next Id Button?..................................... 118
Getting Started with the TWS C++ API iv

Contents
OnReqIds() .. 118

The reqIds() Method.. 118

C++ EWrapper Functions that Return the Next Valid Id 119

Chapter 20: Subscribing to News Bulletins .. 120

What Happens When I Click the Req News Bulletins Button? 120

OnNewsBulletins()... 120

The reqNewsBulletins() method... 121

C++ EWrapper Functions that Return News Bulletins 122

Canceling News Bulletins ... 122

Chapter 21: Viewing and Changing the Server Logging Level 123

What Happens When I Click the Log Configuration Button?............................. 123

OnSetServerLogLevel() .. 124

The setServerLogLevel() Method ... 124

7 Where To Go From Here ... 127

Chapter 22 - Linking to TWS using the TWS C++ API ... 128

Chapter 23 - Additional Resources ... 133

Help with Microsoft Visual Studio and C++ Programming 133

Help with the TWS C++ API ... 133

The API Reference Guide ... 133

The API Beta and API Production Release Notes..................................... 133

The TWS API Webinars... 134

API Customer Forums .. 134

IB Customer Service .. 134

IB Features Poll... 134
Getting Started with the TWS C++ API v

Contents
Getting Started with the TWS C++ API vi

1
Introduction

You might be looking at this book for any number of reasons, including:

• You love IB's TWS, and are interested in seeing how using its API can enhance your
trading.

• You use another online trading application that doesn't provide the functionality of TWS,
and you want to find out more about TWS and its API capabilities.

• You never suspected that there was a link between the worlds of trading/financial
management and computer programming, and the hint of that possibility has piqued
your interest.

Or more likely you have a reason of your own. Regardless of your original motivation, you now
hold in your hands a unique and potentially priceless tome of information. Well, maybe that's
a tiny bit of an exaggeration. However, the information in this book, which will teach you how
to access and manage the robust functionality of IB's Trader Workstation through our TWS
C++ API, could open up a whole new world of possibilities and completely change the way you
manage your trading environment. Keep reading to find out how easy it can be to build your
own customized trading application.

If you are a Financial Advisor who trades for and allocates shares
among multiple client accounts and would like more information
about using the ActiveX API, see the Getting Started with the TWS
C++ API for Advisors Guide.

Note: This guide supports API releases no higher than 9.71.
Getting Started with the TWS C++ API 7

Introduction
How to Use this Book
How to Use this Book
Before you get started, you should read this section to learn how this book is organized, and
see which graphical conventions are used throughout.

Our main goal is to give active traders and investors the tools they need to successfully
implement a custom trading application (i.e. a trading system that you can customize to meet
your specific needs), and that doesn't have to be monitored every second of the day. If you're
not a trader or investor you probably won't have much use for this book, but please, feel free
to read on anyway!

We should also tell you that throughout this book we use the TWS C++ API sample application
to demonstrate how we implemented the API. However, our sample application is not our
primary focus. Our main objective is to introduce you to the methods and parameters in the
C++ API that you will need to learn to build your own custom trading application. You can use
the sample application as a starting point.

Throughout this book, we use the acronym “TWS” in place of “Trader
Workstation.” So when you see “TWS” anywhere, you’ll know we’re
talking about Trader Workstation.

Before you read any further, we need to tell you that this book
focuses on the TWS side of the C++ API - we don't really help you to
learn C++. If you aren't a fairly proficient C++ programmer, or at
least a very confident and bold beginner, this may be more than you

want to take on. We suggest you start with a beginner's C++ programming
book, and come back to us when you're comfortable with the language.

Organization
We’ve divided this book into five major sections, each of which comprises a number of smaller
subsections, and each of those have even smaller groupings of paragraphs and figures…well,
you get the picture. Here’s how we’ve broken things down:

Part 1: Introducing the TWS C++ API

The chapters in this section help you answer those important questions you need to ask before
you can proceed - questions such as "What can TWS do for me?" and "Why would I use an
API?" and "If I WERE to use an API, what does the C++ API have to offer me?" and even
"What other API choices do I have?"

If you already know you want to learn about the TWS API, just skip on ahead.

Part 2: Preparing to Use the TWS C++ API

Part 2 walks you through the different things you'll need to do before your API application can
effectively communicate with TWS. We'll help you download and install the API software,
configure TWS, and get the sample application up and running. A lot of this information is very
important when you first get started, but once it's done, well, it's done, and you most likely
won't need much from this section once you've completed it.
Getting Started with the TWS C++ API 8

Introduction
How to Use this Book
Part 3: Market Data

Part 3 gets you working with the C++ sample application to get market data. You’ll learn how
to request, receive and cancel market data, market depth, historical data, real time bars, run
market scanners and get contract data. We'll tell you exactly what methods you need to use to
send info to TWS, and just what TWS will send you back. We've already documented the
method parameters, descriptions and valid values in the API Reference Guide, but we have
provided a lot of those details here for your convenience.

Part 4: Orders and Executions

Part 4 takes your through the order-related tasks in the C++ API sample application. You’ll
learn how the API handles the process of placing and canceling an order, viewing open orders,
and viewing executions. Here too we provide the methods, events and parameters used for
these trading tasks.

Part 5: Additional Tasks

Part 5 continues your path through the C++ API sample application by describing the
methods, events and parameters used for the rest of the buttons in the sample application,
including how to get the current system time and how to request and cancel news
subscriptions.

Part 6: Where to Go from Here

After filling your head with boatfuls of API knowledge, we wouldn't dream of sending you off
empty-handed! Part 6 includes some additional information about linking to TWS using our
C++ API, then tells you how to keep abreast of new API releases (which of course means new
features you can incorporate into your trading plan), how to navigate the Interactive Brokers
website to find support and information, and what resources we recommend to help you
answer questions outside the realm of IB support, questions such as "Why isn't my Visual
Studio working?"

Footnotes and References
1Any symbols displayed are for illustrative purposes only and are not intended to portray a
recommendation.
Getting Started with the TWS C++ API 9

Introduction
How to Use this Book
Icons

Document Conventions
Here’s a list of document conventions used in the text throughout this book.

TWS-Related

When you see this guy, you know that there is
something that relates specifically to TWS: a new
feature to watch for, or maybe something you’re
familiar with in TWS and are looking for in the API.

C++ Tip

These C++tips are things we noted and think you
might find useful. They don't necessarily relate only to
TWS. We don't include too many of these, but when
you see it you should check it out - it will probably save
you some time.

Important!

This shows you where there is a particularly useful or
important point being made.

Take a Peek!

You may want to take a peek, but it isn’t the end of the
world if you don’t.

Go Outside!

This icon denotes references outside of this book that
we think may help you with the current topic, including
links to the internet or IB site, or a book title.

Convention Description Examples

Bold Indicates:
• menus

• screens

• windows

• dialogs

• buttons

• tabs

• keys you press

• names of classes and
methods

When you click the Req Mkt
Data button…

Press Ctrl+C to copy…
Getting Started with the TWS C++ API 10

Introduction
How to Use this Book
Italics Indicates:
• commands in a menu

• objects on the
screen, such as text
fields, check boxes,
and drop-down lists

To access the users’ guide,
under the Software menu,
select Trader Workstation,
then click Users’ Guide.

Code samples Code samples appear gray
boxes throughout the
book.

See below.
Getting Started with the TWS C++ API 11

Introduction
How to Use this Book
Getting Started with the TWS C++ API 12

2
TWS and the C++ API

The best place to start is by getting an idea of what Trader Workstation (TWS), is all about. In
this section, first we'll describe TWS and some of its major features. Then we'll explain how
the API can be used to enhance and customize your trading environment. Finally, we'll give
you a summary of some of the things the C++ API can do for you!

Here's what you'll find in this section:

• Chapter 1 - What is Trader Workstation?

• Chapter 2 - Why Use the C++ API?
Getting Started with the TWS C++ API 13

TWS and the C++ API
Chapter 1 - What is Trader Workstation?
Chapter 1 - What is Trader Workstation?
Interactive Brokers' Trader Workstation, or TWS, is an online trading platform that lets you
trade and manage orders for all types of financial products (including stocks, bonds, options,
futures and Forex) on markets all over the world - all from your choice of two workspaces:

• The Advanced Order Management workspace, which is a single spreadsheet-like screen.

• Mosaic, a single, comprehensive and intuitive workspace which provides easy access to
Trader Workstation’s trading, order management and portfolio functionality.
Getting Started with the TWS C++ API 14

TWS and the C++ API
Chapter 1 - What is Trader Workstation?
To get a little bit of a feel for TWS, go to the IB website and try the TWS
demo application. Its functionality is slightly limited and it only supports a
small number of symbols, but you'll definitely get the idea. Once you
have an approved, funded account you'll also be able to use PaperTrader,

our simulated trading tool, with paper-money funding in the amount of
$1,000,000, which you can replenish at any time through TWS Account
Management.
Getting Started with the TWS C++ API 15

TWS and the C++ API
Chapter 1 - What is Trader Workstation?
What Can You Do with TWS?
So, what can you do with TWS? For starters, you can:

• Send and manage orders for all sorts of products (all from the same screen!);

• Monitor the market through Level II, NYSE Deep Book and IB's Market Depth;

• Keep a close eye on all aspects of your account and executions;

• Use Technical, Fundamental and Price/Risk analytics tools to spot trends and analyze
market movement;

• Completely customize your trading environment through your choice of modules,
features, tools, fonts and colors, and user-designed workspaces.

Basically, almost anything you can think of TWS can do - or will be able to do soon. We are
continually adding new features, and use the latest technology to make things faster, easier
and more efficient. As a matter of fact, it was this faith in technology's ability to improve a
trader's success in the markets (held by IB's founder and CEO Thomas Peterffy) that launched
this successful endeavor in the first place. Since the introduction of TWS in 1995, IB has
nurtured this relationship between technology and trading almost to the point of obsession!
Getting Started with the TWS C++ API 16

TWS and the C++ API
Chapter 1 - What is Trader Workstation?
A Quick Look at TWS
This section gives you a brief overview of the most important parts of TWS.

The TWS Quote Monitor

First is the basic TWS Quote Monitor. It's laid out like a spreadsheet with rows and columns.
To add tickers to a page, you just click in the Underlying column, type in an underlying symbol
and press Enter, and walk through the steps to select a product type and define the contract.
Voila! You now have a live market data line on your trading window. It might be for a stock,
option, futures or bond contract. You can add as many of these as you want, and you can
create another window, or trading page, and put some more on that page. You can have any
and all product types on a single page, maybe sorted by exchange, or you can have a page for
stocks, a page for options, etc. Once you get some market data lines on a trading page, you're
ready to send an order.

The Order Ticket

What? An order ticket? Sure, we have an order ticket if that's what you really want. But we
thought you might find it easier to simply click on the bid or ask price and have us create a
complete order line instantly, right in front of your eyes! Look it over, and if it's what you want
click a button to transmit the order. You can easily change any of the order parameters right
on the order line. Then just click the green Transmit guy to transmit your order! It's fast and
it's easy, and you can even customize this minimal two-click procedure (by creating hotkeys
and setting order defaults for example) so that you're creating and transmitting orders with
just ONE click of the mouse.

Real-Time Account Monitoring

TWS also provides a host of real-time account and execution reporting tools. You can go to the
Account Window at any time to see your account balance, total available funds, net liquidation
and equity with loan value and more. You can also monitor this data directly from your trading
window using the Trader Dashboard, a monitoring tool you can configure to display the last
price for any contracts and account-related information directly on your trading window.

So - TWS is an all-inclusive, awesome powerful trading tool. You may be wondering, "Where
does an API fit in with this?" Read on to discover the answer to that question.

For more information on TWS, see the TWS Users' Guide on our
web site.
Getting Started with the TWS C++ API 17

TWS and the C++ API
Chapter 2 - Why Use the TWS C++ API?
Chapter 2 - Why Use the TWS C++ API?
OK! Now that you are familiar with TWS and what it can do, we can move on to the amazing
API. If you actually read the last chapter, you might be thinking to yourself "Why would I want
to use an API when TWS seems to do everything." Or you could be thinking "Hmmmm, I
wonder if TWS can… fill in the blank?" OK, if you're asking the first question, I'll explain why
you might need the API, and if you're asking the second, it's actually the API that can fill in the
blank.

TWS has the capability to do tons of different things, but it does them in a certain way and
displays results in a certain way. It's likely that our development team, as fantastic as they
are, hasn't yet exhausted the number of features and way of implementing them that all of
you collectively can devise. So it's very likely that you, with your unique way of thinking, will
be or have been inspired by the power of TWS to say something like "Holy moly, I can't
believe I can really do all of this with TWS! Now if I could only just (fill in the blank),my life
would be complete!"

That's where the API comes in. Now, you can fill in the blank! It's going to take a little work to
get there, but once you see how cool it is to be able to access functionality from one
application to another, you'll be hooked.
Getting Started with the TWS C++ API 18

TWS and the C++ API
Chapter 2 - Why Use the TWS C++ API?
TWS and the API
In addition to allowing you pretty much free reign to create new things and piece together
existing things in new ways, the API is also a great way to automate your tasks. You use the
API to harness the power behind TWS - in different ways.

Here's an analogy that might help you understand the relationship between TWS and the API.
Start by imagining TWS as a book (since TWS is constantly being enhanced, our analogy
imagines a static snapshot of TWS at a specific point in time). It's the reference book you were
looking for, filled with interesting and useful information, a book with a beginning, middle and
end, which follows a certain train of logic. You could skip certain chapters, read Chapter 10
first and Chapter 2 last, but it's still a book. Now imagine, in comparison, that the API is the
word processing program in which the book was created with the text of the book right there.
This allows you access to everything in the book, and most importantly, it lets you continually
change and update material, and automate any tasks that you'd have to perform manually
using just a book, like finding an index reference or going to a specific page from the table of
contents.

The API works in conjunction with TWS and with the processing functions that run behind
TWS, including IB's SmartRouting, high-speed order transmission and execution, support for
over 40 orders types, etc. TWS accesses this functionality in a certain way, and you can design
your API to take advantage of it in other ways.
Getting Started with the TWS C++ API 19

TWS and the C++ API
Chapter 2 - Why Use the TWS C++ API?
Available API Technologies
IB provides a suite of custom APIs in multiple programming languages, all to the same end.
These include Java, C++, Active X for Visual Basic and .NET, ActiveX for Excel, DDE for Excel
(Visual Basic for Applications, of VBA), CSharp and POSIX. This book focuses specifically on
just one, the C++ version. Why would you use C++ over the other API technologies? The
main reason might be that you are a C++ expert. If you don't know C++ or any other
programming language, you should take a look at the Excel/DDE API, which has a much
smaller learning curve. But if you know CV++, this platform offers more flexibility than the
DDE for Excel, is supported on Windows, MAC, and Unix/Linux (the DDE is only supported in
Windows), and provides very high performance.

For more information about our APIs, see the Application
Programming Interfaces page on our web site.

An Example
It's always easier to understand something when you have a real life example to contemplate.
What follows is a simple situation in which the API could be used to create a custom result.

TWS provides an optional field that shows you your position-specific P&L for the day as either
a percentage or an absolute value. Suppose you want to modify your position based on your
P&L value? At this writing, the only way to do this would be to watch the market data line to
see if the P&L changed, and then manually create and transmit an order, but only if you
happened to catch the value at the right point. Hmmmmm, I don't think so! Now, enter the
API! You can instruct the API to automatically trigger an order with specific parameters (such
as limit price and quantity) when the P&L hits a certain point. Now that's power! Another nice
benefit of the API is that it gives you the ability to use the data in TWS in different ways. We
know that TWS provides an extensive Account Information window that's chock-full of
everything you'll ever want to know about your account status. The thing is, it's only displayed
in a TWS window, like the one on the next page.
Getting Started with the TWS C++ API 20

TWS and the C++ API
Chapter 2 - Why Use the TWS C++ API?
Lovely though it is, what if you wanted to do something else with this information? What if you
want it reflected in some kind of banking spreadsheet where you log information for all
accounts that you own, including your checking account, Interactive Brokers' account, 401K,
ROIs, etc? Again - enter the API!

You can instruct the API to get any specific account information and put it wherever it belongs
in a spreadsheet. The information is linked to TWS, so it's easy to keep the information
updated by simply linking to a running version of TWS. With a little experimenting, and some
help from the API Reference Guide and the TWS Users' Guide, you'll be slinging data like a
short-order API chef in no time!

There are a few other things you must do before you can work with the TWS C++ API. The
next chapter gets you geared up and ready to go.
Getting Started with the TWS C++ API 21

TWS and the C++ API
Chapter 2 - Why Use the TWS C++ API?
Getting Started with the TWS C++ API 22

3
Preparing to Use the C++ API

Although the API provides great flexibility in implementing your automated trading ideas, all of
its functionality runs through TWS. This means that you must have a TWS account with IB,
and that you must have your TWS running in order for the API to work. This section takes you
through the minor prep work you will need to complete, step by step.

Here's what you'll find in this section:

• Chapter 3 - Install an IDE

• Chapter 4 - Download the API Software

• Chapter 5 - Connect to the C++ API Sample Application

We want to tell you again that this book focuses on the TWS side of
the C++ API - we don't really help you to learn C++. Unless you
are a fairly proficient C++ programmer, or at least a very confident
and bold beginner, this may be more than you want to take on. We
suggest you start with a beginner's C++ programming book, and

come back to us when you're comfortable with the language.
Getting Started with the TWS C++ API 21

Preparing to Use the C++ API
Chapter 3 - Install an IDE
Chapter 3 - Install an IDE
OK, well we've already said that you need to know C++ before you can successfully
implement your own TWS C++ API application, and there's a good chance you already have
the tools you'll need downloaded and installed. But in case you don't, we'll quickly walk you
through what you need, which is simply an integrated development environment (IDE) that
supports Microsoft C++, as well as Microsoft Visual Basic and the Microsoft .NET framework.

In this book we use Microsoft Visual Studio 2008 as the IDE of choice.
We’ll try to keep the Visual Studio-specific instructions to a minimum,
but if you're using another IDE you'll have to interpret those
instructions to fit your C++ development environment. If you're using
Visual Studio 2008 and aren't totally familiar with it, we recommend

browsing through the How Do I section of the online help, which you can access
from Visual Studio’s Help menu.

Once you have your C++ development environment installed, you can go to the IB website
and download the TWS API software.
Getting Started with the TWS C++ API 22

Preparing to Use the C++ API
Chapter 4 - Download the API Software
Chapter 4 - Download the API Software
Next, you need to download the API software from the IB website.

Step 1: Download the API software.

This step takes you out to the IB website at
https://individuals.interactivebrokers.com/en/index.php?f=1325. The menus are along the
top of the homepage. Hold your mouse pointer over the Trading Technology menu, then click
API Solutions.

On the API Solutions page, click the more info button next to IB API.
Getting Started with the TWS C++ API 23

https://www.interactivebrokers.com/en/index.php?f=1325

Preparing to Use the C++ API
Chapter 4 - Download the API Software
On the next page that appears, click the API Software button.

Click the I Agree button on the license agreement page to open the API software download
page.

This displays the IB API page which shows a table with buttons that initiate the API software
download process for Windows, MAC or Unix platforms. When available, there will also be a
Windows Beta version of the software. Find the OS you need, then click the button to
download the API installation program.
Getting Started with the TWS C++ API 24

Preparing to Use the C++ API
Chapter 4 - Download the API Software
For this book, we assume that you are using Windows. If you're
using a different operating system (Mac, Unix), be sure to adjust
the instructions accordingly!

In the Windows column, click the IB API for Windows button. This opens a File Download
box, where you can decide whether to save the installation file, or open it. We recommend you
choose Save and then select a place where you can easily find it, like your desktop (you
choose the path in the Save in field at the top of the Save As box that opens up). Once you've
selected a good place to put it, click the Save button. It takes seconds to download the
executable file. Note that the API installation file is named for the API version; for example,
TWS API Install 9.69.01.msi.

We'll usually be stressing just the opposite, but at this point, you
need to make sure TWS is not running. If it is, you won't be able to
install the API software.
Getting Started with the TWS C++ API 25

Preparing to Use the C++ API
Chapter 4 - Download the API Software
Step 2: Install the API software.

Next, go to the place where you saved the file (for example, your desktop or some other
location on your computer), and double-click the API software installation file icon. This starts
the installation wizard, a simple process that displays a series of dialogs with questions that
you must answer.

Once you have completed the installation wizard, the sample application installs, and you're
ready to open the C++ sample application, connect to TWS, and get started using the sample
application!
Getting Started with the TWS C++ API 26

Preparing to Use the C++ API
Chapter 5 - Connect to the C++ Sample Application
Chapter 5 - Connect to the C++ Sample
Application

OK, you've got all the pieces in place. Now that we're done with the prep work, it's time to get
down to the fun stuff.

Although the API provides great flexibility in implementing your automated trading ideas, all of
its functionality runs through TWS. This means that you must have a TWS account with IB,
and you must have TWS running in order for the API to work. This section describes how to
enable TWS to connect to the C++ API. Note that if you don't have an account with IB, you
can use the Demo TWS system to check things out.. If you DO have an account, we
recommend opening a linked PaperTrader test account, which simulates the TWS trading
environment, and gives you $100,000 in phantom cash to play with.

Enabling TWS to support the API is probably the simplest step you'll encounter in this book.
It's probably more difficult to actually remember to log into TWS before you run the API!

Running the C++ API Sample Application
Here’s how to connect to the Visual Basic sample application:

Step 1: Log into TWS.

OK, log into TWS, or run the Demo available on the Demo tab of the Trader Workstation page
on our website.

Step 2: Enable TWS to support the C++ API.

Now look up at the top of the trading window, and you'll see the menu bar. Click the Edit
menu, and then click Global Configuration. In the Configuration window, click API in the left
pane, then click Settings, which reveals several options on the right side of the window. Check
the Enable ActiveX and Socket Clients check box and click OK.

Step 3: Run the C++ Sample Application.

We’ve included a complete C++ client with our API software. To run this sample application,
go to your TWS API installation folder (typically C:\IB_API_X_XX, where X_XX is the API
version number), then open the TestSocketClient\Release folder and run the file named
client2.exe.

Running the C++ API Sample Application from Visual Studio 2008
If you prefer, you can run the VB.NET sample application from within Microsoft Visual Studio
2008. Here’s how:

Step 1: Log into TWS.

This step is the same for the VB.NET sample as it was for the Visual Basic sample; we’re
including it here so you don’t have to turn the page.

OK, log into TWS, or run the Demo available on the Demo tab of the Trader Workstation page
on our website.
Getting Started with the TWS C++ API 27

http://www.interactivebrokers.com/en/p.php?f=tws&p=d&ib_entity=llc

Preparing to Use the C++ API
Chapter 5 - Connect to the C++ Sample Application
Step 2: Enable TWS to support the C++ API.

This step is the also the same for both versions of the sample application; again, we’re
repeating it for your convenience.

Click the Edit menu, and then click Global Configuration. In the Configuration window, click
API in the left pane, then click Settings, which reveals several options on the right side of the
window. Check the Enable ActiveX and Socket Clients check box and click OK.

Step 3: Run the C++ API Sample Application.

These instructions assume that you are using Microsoft Visual
Studio 2008. Our C++ API sample application code was developed
as a C++6 project. If you are using a different C++ development
environment, adjust the instructions below accordingly.

Here’s how to do this:

1 Download and install the latest version of the API software.

2 Create the folder where all project related files will be located. For example,
C:\SampleSocketClient.

3 Copy the folders TestSocketClient, Shared and SocketClient into the folder you created
in Step 2.

4 In Visual Studio, select New > Project From Existing Code from the File menu.

5 Select Visual C++ as the project type.

6 In the Create New Project from Existing Code Files dialog:

a For the Project File Location, select the folder you created in Step 2.

b For the Project Name, type SampleSocketClient.

c Click Finish.

7 Right-click the project in the Solution Explorer and select Properties. In the Property
Pages dialog:

a On the left side of the dialog, select Configuration Parameters > C/C++> General.
In the Additional Include Directories field on the right side of the dialog, type:

./Shared;./SocketClient/src

b On the left side of the dialog, select Configuration Parameters > C/C++ > Code
Generation. In the Runtime Library field on the right side of the dialog, select
Multi-threaded (/MT).

8 Click OK to save your changes.

9 Build the project.
Getting Started with the TWS C++ API 28

Preparing to Use the C++ API
Chapter 5 - Connect to the C++ Sample Application
In case of errors:

If the C++ sample application won’t build or run due to errors, try the following steps:

1 In the Visual Studio 2008 Solution Explorer, remove the following files from the project
(select the item from the list and press Delete):

• Remove DlgShareAllocation.h from the list of Header Files.

• Remove DlgShareAllocation.cpp from the list of Source Files.

• Remove TwsSocketClient.lib from the project.

2 In the Solution Explorer, add the following existing items from the TestSocketClient
folder in your TWS API installation folder (right-click the Header Files/Source Files
folder, then select Add > Existing Item):

• Add DlgUnderComp.h to the list of Header Files.

• Add DlgUnderComp.cpp to the list of Source Files.

If you are running TWS API Version 9.6 or higher, you must also
add DlgAlgoParams.h to the list of Header Files and
DlgAlgoParams.cpp to the list of Source Files in the project.

3 In the Solution Explorer, add the following existing items from the SocketClient/src
folder in your TWS API installation folder to the list of Source Files (right-click the
Source Files folder, then select Add > Existing Item):

• EClientSocket.cpp

• MySocket.cpp

4 Press F5 to run the sample client, which is pictured on the next page.
Getting Started with the TWS C++ API 29

Preparing to Use the C++ API
Chapter 5 - Connect to the C++ Sample Application
What’s Next
You’re now ready to start looking at how our C++ sample application uses our TWS C++ API.
Part 3 focuses on market data-related trading tasks defined by the action buttons in the
sample application. We'll take a quick, general look at what's going on behind the GUI, then
we'll walk through the basics of requesting market data using the TWS C++ API.
Getting Started with the TWS C++ API 30

4
Market Data

You've completed the prep work, and you have the C++ sample application up and running.
This section of the book starts with a description of the basic framework of the sample
application, then reviews the TWS C++ API methods associated with each trading task.

This section describes how to connect the sample application to TWS and how to perform
market data-related tasks such as requesting and canceling market data, historical data and
real time bars, as well as how to subscribe to market scanners and get contract data. We'll
show you the methods, events and parameters behind these trading tasks.

Here's what you'll find in this section:

• Chapter 6 - Connecting to TWS

• Chapter 7 - Requesting and Canceling Market Data

• Chapter 8 - Requesting and Canceling Market Depth

• Chapter 9 - Requesting and Canceling Historical Data

• Chapter 10 - Requesting and Canceling Real Time Bars

• Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

• Chapter 12 - Requesting Contract Data

Using the C++ sample application is a good way to practice locating and using the reference
information in the API Reference Guide. With the sample program, you can compare the data
in the sample message with the method parameters in the API Reference Guide.
Getting Started with the TWS C++ API 31

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/c.htm

Market Data
Chapter 6 - Connecting to TWS
Chapter 6 - Connecting to TWS
This chapter describes the basic framework of the C++ sample application and what happens
when you connect and disconnect to a running instance of TWS.

C++ Sample Application
Let's take a look at the C++ sample application and the C++ API. Here's the C++ sample
application when you first run it:
Getting Started with the TWS C++ API 32

Market Data
Chapter 6 - Connecting to TWS
Source Code
Our C++ API code includes many source files, including the source code for our sample
application and the source code for our C++ API. For the purposes of this guide, you should
pay attention to these files in particular:

• client2Dlg.cpp - The main source file that includes all of the EClientSocket methods,
which send messages to TWS, the EWrapper functions, which return data from TWS,
and the SocketClient properties, which contain groups of properties for things like
contracts and orders.

• Dlg*.cpp - The source files for the many dialog boxes used in our C++ sample
application. For example, the Connect dialog code is stored in DlgConnect.cpp.

These files are NOT part of our C++ API code but are part of the C++ sample application
code. Throughout this guide, however, we will use code samples primarily from client2Dlg.cpp,
as well as some code from the individual Dlg*.cpp files.

Our C++ API code contains code that doesn’t directly apply to the
purpose and content of this guide. If you are an experienced C++
programmer, you can look through all of our source code, including
the code used for the sample application itself, but this is not
necessary to learn the methods, functions and parameters in our
C++ API.

A Look at client2Dlg.cpp

If you open the file client2Dlg.cpp in your IDE, you will see a lot of C++ code. While using this
guide, a few items in the file are of particular interest:

• #includes - The include statements include all of the header files needed by this source
file.

• MESSAGE MAP - This section maps all of the buttons in the sample application graphical
user interface (GUI) to related “On” methods.

• “On” methods - Methods included in client2Dlg.cpp that call the SocketClient methods in
our C++ API. When you click a button in our sample application, an On method calls the
related C++ API SocketClient method. For example, when you click the Connect button
in the sample appliction to connect to TWS, OnConnect() calls our eConnect()
SocketClient method. The On methods are not part of our C++ API code but are part of
the code needed by our sample application code.
Getting Started with the TWS C++ API 33

Market Data
Chapter 6 - Connecting to TWS
What Happens When I Click the Connect Button?

The very first thing you do with the C++ sample appliction is to connect it to a running
instance of TWS. You click the Connect button to do this. This displays the Connect dialog,
shown below.

• IP Address - This the IP address of the systemwhere Trader Workstation is installed. If
TWS and the API are installed on the same computer, you can either leave this field
blank, or enter 127.0.0.1 as a Trusted IP Address in TWS’ API Configuration screen to
indicate local host.

• Port - 7496 is the default port number, but you can modify this if you need to.

• Client ID - This is used to determine each API connection. Each connection must have a
unique Client ID.

Then you can enter the IP Address, Port and Client Id values in the input fields of the dialog.
When you click the OK button, the Connect dialog closes and a message indicating that you
are connecting to TWS is displayed in the TWS Server Responses text panel on the sample
application window. A confirmation dialog appears in TWS; click Yes to confirm that you want
to connect. Note that this dialog does not appear if the IP Address of your connection is local
host.
Getting Started with the TWS C++ API 34

Market Data
Chapter 6 - Connecting to TWS
Finally, a message indicating that you have successfully connected to TWS appears in the TWS
Server Responses text panel on the sample application window.

That’s what happens on the user side of things. Now let’s see what happens behind the
scenes.

OnConnect()

When you click the Connect button, the OnConnect() method defined in client2Dlg.cpp runs.
Here is what the code looks like:

void CClient2Dlg::OnConnect()
{

// IMPORTANT: TWS must be running, and the "Enable Excel Integration"
// checkbox on the "Settings" menu must be checked!

// get connection parameters
CDlgConnect dlg;
if(dlg.DoModal() == IDCANCEL) {

return;
}

// connect to TWS
{

CString displayString;
displayString.Format("Connecting to Tws using clientId %d ...",

dlg.m_clientId);
int i = m_orderStatus.AddString(displayString);
m_orderStatus.SetTopIndex(i);

}

m_pClient->eConnect(dlg.m_ipAddress, dlg.m_port, dlg.m_clientId);

if(m_pClient->serverVersion() > 0){
CString displayString;
displayString.Format("Connected to Tws server version %d at %s.",

m_pClient->serverVersion(), m_pClient->TwsConnectionTime());
int i = m_orderStatus.AddString(displayString);
m_orderStatus.SetTopIndex(i);

}
}

Getting Started with the TWS C++ API 35

Market Data
Chapter 6 - Connecting to TWS
OnConnect() does the following:

• Displays the Connect dialog.

• When you click the OK button in the Connect dialog, attempts to connect to TWS and
displays a text message to that effect.

• Calls the C++ eConnect() method and passes the input values for the IP Address
(dlg.m_ipAddress), Port (dlg.m_port) and Client ID (dlg.m_clientId) fields to TWS as
parameters of the eCconnect() method. The important thing to remember here is that
the three eConnect() parameters correspond to the three fields in the Connect dialog.

• If the connection to TWS is successfully established, displays the message “Connected
to Tws server version at” and inserts the TWS server version and the date and time of
the connection.

Disconnecting from a Running Instance of TWS

To disconnect from a running instance of TWS, click the Disconnect button in the C++ sample
application. When you do this, OnDisconnect() calls the eDisconnect() C++ method, which has
no parameters and disconnects the sample application from TWS. It’s that simple!

Here’s what OnDisconnect() looks like, with the eDisconnect() EClientSocket method
highlighted in bold:

OK, got all of that? Great! Now let's move on, and see what happens when you use the market
data buttons.

m_pClient->eConnect(dlg.m_ipAddress, dlg.m_port, dlg.m_clientId);

void CClient2Dlg::OnDisconnect()
{

// disconnect
m_pClient->eDisconnect();

}

Getting Started with the TWS C++ API 36

Market Data
Chapter 7: Requesting and Canceling Market Data
Chapter 7: Requesting and Canceling Market
Data

This chapter describes how the C++ sample application requests and cancels market data.
You click the Req Mkt Data button to display the Request Market Data dialog, then enter
information in the appropriate fields and click OK.

The following image shows the Request Market Data dialog and the fields you need to fill in to
get market data.
Getting Started with the TWS C++ API 37

Market Data
Chapter 7: Requesting and Canceling Market Data
What Happens When I Click the Req Mkt Data Button?

Once you connect to TWS using the C++ sample application, you get market data by clicking
the Req Mkt Data button, then entering an underlying and some other information in the
Request Market Data dialog, such as symbol, type, and exchange, and clicking OK. The three
sections of the dialog that you should fill in are:

• Id field - The ticker id, which must be a unique value. When the market data returns, it
will be identified by this id. This is typically filled in automatically for you in our sample
application, but occasionally you might get a “Duplicate Ticker ID” error message, in
which case you must repeat your request for market data with an incremented ticker
Id.

• Contract Description fields - These are the fields that describe the contract for which you
want market data, including the symbol, type, exchange and currency. For futures and
options, you fill in the other fields in the section.

• Market Data fields - There are two fields here, Generic Tick Tags and Snapshot, a check
box. The snapshot option returns a single snapshot of market data if checked. Note that
you cannot specify Generic Tick Tags if you select the Snapshot check box. You do not
need to fill in the Generic Tick Tags field, bu you can if want the market data to return
certain values. This field contains default values, so if you do not want to specify any
generic tick tags for additional types of market data, you should delete the values from
the field. Also note that if you accept the default values in the Generic Tick Tags field for
a stock ticker, you must delete 162 (it does not apply to stocks).

For a list of all generic tick tags, see Generic Tick Types in the API
Reference Guide, available on our web site.

The market data you request is displayed as scrolling lines of text in the Market and Historical
Data text panel, as shown below.
Getting Started with the TWS C++ API 38

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/generic_tick_types.htm

Market Data
Chapter 7: Requesting and Canceling Market Data
The Symbol, Security Type, Exchange and Currency values are required for all instrument
types. If your security type is STK, those four values are all you need. But if you're
looking for the latest price on a Jan08 27.5 call, you need to give the method a bit more
than that. The moral: be sure you include values in the appropriate fields based on what

return values you want to get.

That’s what happens from a user’s point of view. But what’s really happening?

OnReqMktData()

When you click the Req Mkt Data button, the OnReqMktData() method defined in
client2Dlg.cpp runs. Here is what the code looks like:

The code samples in this book may not look exactly like the code
when you view it Visual Studio. Don’t worry, the code is exactly the
same. We’ve simply formatted the code samples to fit the size of
the pages in this guide.

OnReqMktData() does the following:

• Initializes the Request Market Data dialog.

• Calls the C++ method reqMktData() when the OK button is clicked.

About the Request Market Data Dialog

Before we continue with market data requests using the C++ API sample application, let’s
stop and take a look at the Request Market Data dialog. This is the dialog that is pictured at
the beginning of this chapter and is called DlgOrder in the code.

As you work through the different trading tasks described in this book, you will notice that the
same dialog box is used for a variety of functions. This object is used in slightly different forms
to:

• request and cancel market data;

• place and cancel orders;

• request and cancel market depth;

• request contract details;

void CClient2Dlg::OnReqMktData()
{
 // run dlg box
 m_dlgOrder->init(this, "Request Market Data", CDlgOrder::REQ_MKT_DATA,

m_managedAccounts);
if(m_dlgOrder->DoModal() != IDOK) return;

// request ticker
m_pClient->reqMktData(m_dlgOrder->m_id, m_dlgOrder->getContract(),

m_dlgOrder->m_genericTicks, m_dlgOrder->m_snapshotMktData);
}

Getting Started with the TWS C++ API 39

Market Data
Chapter 7: Requesting and Canceling Market Data
• request and cancel historical data;

• request and cancel real time bars

• exercise options.

So, for example, when you request market data, this dialog is called the Request Market Data
dialog (“Request Market Data” appears in the title bar of the dialog), and only those fields
required for market data requests are accessible. The fields required for the other trading
tasks listed above are grayed out and unavailable.

reqMktData()

Now let’s get back to requesting market data.

When you click OK in the sample application to submit a market data request, the
reqMktData() method sends your market data request to TWS and, if all the entries are valid,
the requested data is returned by way of the tickPrice(), tickSize(), tickGeneric(),
tickOptionComputation(), tickString() and tickEFP() EWrapper functions. What’s really
happening though is that the reqMktData() method triggers a series of “tick” events, which
return the market data from TWS. We’ll look at these tick events a little later.

For now, let's find out which parameters are used for requesting market data. The
reqMktData() method in our sample application code looks like this:

This table is for illustrative purposes only and is not intended to portray valid API documentation.

As you can see from the table above, this method has four parameters, which correspond to
the fields in the Request Market Data dialog that you fill in.

m_pClient->reqMktData(m_dlgOrder->m_id, m_dlgOrder->getContract(),
m_dlgOrder->m_genericTicks, m_dlgOrder->m_snapshotMktData);

Parameter Description

tickerId The ticker id. Must be a unique value. When the market data
returns, it will be identified by this tag. This is also used when
canceling the market data.

contract This object includes attributes that describe the contract.

genericTicklist A comma delimited list of generic tick types.

snapshot Check to return a single snapshot of market data and have the
market data subscription cancel. Do not enter any
genericTicklist values if you use snapshot.
Getting Started with the TWS C++ API 40

Market Data
Chapter 7: Requesting and Canceling Market Data
Now let's take another look at the Request Market Data dialog and see how and where it
relates to the reqMktData() method.

The circled sections in the picture above contain fields that correspond to the parameters in
reqMktData(). This means that the values you entered in the dialog are passed to TWS by the
parameters in the reqMktData() method.The tickerId parameter corresponds to the Id field in
the dialog. The snapshot parameter is used to get a snapshot of market data; we’ll describe
this in more detail a little later in this chapter.

The contract object contains properties that correspond to the fields in the Contract
Description section of the Request Market Data dialog. For a complete list of the properties in
the contract object, see the API Reference Guide. You can ignore the other fields in the dialog
right now because they represent parameters from different methods. Don't worry, we'll be
revisiting them very soon!
Getting Started with the TWS C++ API 41

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/contract.htm

Market Data
Chapter 7: Requesting and Canceling Market Data
C++ EWrapper Functions that Return Market Data

As we mentioned before, requested market data is returned to the sample application by way
of the tickPrice(), tickSize(), tickGeneric(), tickOptionComputation(), tickString() and tickEFP()
events, each of which returns a different part of the market data.

Here are the “tick” events as they appear in client2Dlg.cpp:

tickPrice()

void CClient2Dlg::tickPrice(TickerId tickerId, TickType tickType, double
price, int canAutoExecute)
{

CString str;
str.Format("id=%i %s=%f canAutoExecute=%d",

tickerId, (const char*)getField(tickType), price, canAutoExecute);
int i = m_ticks.AddString(str);

int top = i - N < 0 ? 0 : i - N;
m_ticks.SetTopIndex(top);

}

Getting Started with the TWS C++ API 42

Market Data
Chapter 7: Requesting and Canceling Market Data
tickSize()

void CClient2Dlg::tickSize(TickerId tickerId, TickType tickType, int
size)
{

CString str;
str.Format("id=%i %s=%i",

tickerId, (const char*)getField(tickType), size);
int i = m_ticks.AddString(str);

int top = i - N < 0 ? 0 : i - N;
m_ticks.SetTopIndex(top);

}

tickGeneric()

void CClient2Dlg::tickGeneric(TickerId tickerId, TickType tickType, double
value)
{

CString str;
str.Format("id=%i %s=%f",

tickerId, (const char*)getField(tickType), value);
int i = m_ticks.AddString(str);

int top = i - N < 0 ? 0 : i - N;
m_ticks.SetTopIndex(top);

}

tickString()

void CClient2Dlg::tickString(TickerId tickerId, TickType tickType, const
CString& value)
{

CString str;
str.Format("id=%i %s=%s",

tickerId, (const char*)getField(tickType), value);
int i = m_ticks.AddString(str);

int top = i - N < 0 ? 0 : i - N;
m_ticks.SetTopIndex(top);

}

Getting Started with the TWS C++ API 43

Market Data
Chapter 7: Requesting and Canceling Market Data
tickEFP()

void CClient2Dlg::tickEFP(TickerId tickerId, TickType tickType, double basisPoints,
const CString& formattedBasisPoints, double totalDividends, int holdDays, const
CString& futureExpiry, double dividendImpact, double dividendsToExpiry)
{

CString str;
str.Format("id=%i %s: basisPoints=%f / %s impliedFuture=%f holdDays=%i

futureExpiry=%s dividendImpact=%f dividendsToExpiry=%f",
tickerId, (const char*)getField(tickType), basisPoints,

formattedBasisPoints, totalDividends, holdDays, futureExpiry, dividendImpact,
dividendsToExpiry);

int i = m_ticks.AddString(str);

int top = i - N < 0 ? 0 : i - N;
m_ticks.SetTopIndex(top);

}

tickOptionComputation()

void CClient2Dlg::tickOptionComputation(TickerId tickerId, TickType
tickType, double impliedVol, double delta, double modelPrice, double
pvDividend)
{

CString str, impliedVolStr("N/A"), deltaStr("N/A"),
modelPriceStr("N/A"), pvDividendStr("N/A");

if (impliedVol != DBL_MAX) {
impliedVolStr.Format("%f", impliedVol);

}
if (delta != DBL_MAX) {

deltaStr.Format("%f", delta);
}
if (tickType != MODEL_OPTION) {

str.Format("id=%i %s impliedVol=%s delta=%s",
tickerId, (const char*)getField(tickType),

impliedVolStr, deltaStr);
} else {

CString modelPriceStr("N/A"), pvDividendStr("N/A");
if (modelPrice != DBL_MAX) {

modelPriceStr.Format("%f", modelPrice);
}
if (pvDividend != DBL_MAX) {

pvDividendStr.Format("%f", pvDividend);
}
str.Format("id=%i %s vol=%s delta=%s modelPrice=%s pvDividend=%s",

tickerId, (const char*)getField(tickType),
impliedVolStr, deltaStr, modelPriceStr, pvDividendStr);

}
int i = m_ticks.AddString(str);

int top = i - N < 0 ? 0 : i - N;
m_ticks.SetTopIndex(top);

}

Getting Started with the TWS C++ API 44

Market Data
Chapter 7: Requesting and Canceling Market Data
The important thing to remember here is that your market data is returned from TWS by way
of this series of tick events. The details of how we implemented these events in our sample
application code is less important.

For more details about these events and their parameters, see the
C++ Class EWrapper Functions section of the API Reference Guide.

Getting a Snapshot of Market Data
Another way to get market data from TWS to the C++ sample application is to get a snapshot
of market data. A market data snapshot gives you all the market data in which you are
interested for a contract for a single moment in time. What this means is that instead of
watching the requested market data continuously scroll by in the Market and Historical Data
text panel of the C++ sample application, you get a single "snapshot" of the data. This frees
you from having to keep up with the scrolling data and having to cancel the market data
request when you are finished.

To get snapshot market data in our C++ sample application, simply click the Req Mkt Data
button, then fill in the appropriate fields in the Request Market Data dialog, and finally check
the Snapshot check box and click OK.

You’ll recall that snapshot is a boolean parameter of the reqMktData() method.

Canceling Market Data

When you click the Cancel Mkt Data button, the Cancel Market Data dialog appears. This is
another version of the same dialog saw when we requested market data; the only difference is
that when you cancel market data, all the fields in the dialog are grayed out except Id. Simply
click OK to submit your cancellation of the market data.

So what happens in the code when you do this?

When you click the Cancel Mkt Data button, the OnCancelMktData() method in client2Dlg.cpp
runs.

This method does the following:

void CClient2Dlg::OnCancelMktData()
{

// get ticker id
 m_dlgOrder->init(this, "Cancel Market Data", CDlgOrder::CANCEL_MKT_DATA,
m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

// cancel market data
m_pClient->cancelMktData(m_dlgOrder->m_id);

}

Getting Started with the TWS C++ API 45

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/class_ewrapper_functions.htm

Market Data
Chapter 7: Requesting and Canceling Market Data
• Displays the Cancel Market Data dialog.

• Calls the C++ method cancelMktData() when the OK button is clicked.

cancelMktData()

This method has a single parameter, id, which is the same ID that was specified in the
reqMktData() call for market data. The cancelMktData() method is shown below as it appears
in our sample application code.

Next we’ll see how the C++ API handles requests for market depth.

m_pClient->cancelMktData(m_dlgOrder->m_id);
Getting Started with the TWS C++ API 46

Market Data
Chapter 8 - Requesting and Canceling Market Depth
Chapter 8 - Requesting and Canceling Market
Depth

This chapter discusses the methods for requesting and canceling market depth in the C++
sample application. We'll show you the methods and parameters behind the sample
application and how they call the methods in the TWS C++ API.

For requesting market depth, you need to use the highlighted fields in the Request Market
Depth dialog as shown here:
Getting Started with the TWS C++ API 47

Market Data
Chapter 8 - Requesting and Canceling Market Depth
What Happens When I Click the Req Mkt Depth Button?

Once you connect to TWS using the C++ sample application, you can request market depth by
clicking the Req Mkt Depth button. You then enter information in the Contract Description and
Market Depth fields in the Request Market Depth dialog pictured on the previous page and
click OK. The market depth you request is displayed in the Market Depth dialog, an example of
which is shown below.

That’s what happens from a user’s point of view. Let’s see what’s going on behind the scenes.
Getting Started with the TWS C++ API 48

Market Data
Chapter 8 - Requesting and Canceling Market Depth
OnReqMktDepth()

When you click the Req Mkt Data button, the OnReqMktData() method defined in
client2Dlg.cpp runs. Here is what the code looks like:

OnReqMktDepth() does the following:

• Initializes the Request Market Depth dialog (which is simply another instance of
DlgOrder).

• Calls the C++ method reqMktDepth() when the OK button is clicked.

• Initializes the Market Depth dialog, dlgMktDepth, which will display the market depth
data returned from TWS.

The reqMktDepth() Method

When you click OK in the sample application to submit a market depth request, the
reqMktDepth() method sends your request to TWS and, if all the entries are valid, the
requested data is returned by way of the updateMktDepth() and updateMktDepthL2() events.
So the reqMktDepth() method triggers these two events in order to return market depth to the
sample application.

Now let's see which parameters are used to request market depth. The reqMktDepth() method
looks like this:

This table is for illustrative purposes only and is not intended to portray valid API documentation.

void CClient2Dlg::OnReqMktDepth()
{

// run dlg box
 m_dlgOrder->init(this, "Request Market Depth", CDlgOrder::REQ_MKT_DEPTH,
m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

// request ticker
m_pClient->reqMktDepth(m_dlgOrder->m_id, m_dlgOrder->getContract(),

m_dlgOrder->m_numRows);
m_dlgMktDepth->DoModal();
m_pClient->cancelMktDepth(m_dlgOrder->m_id);

}

m_pClient->reqMktDepth(m_dlgOrder->m_id, m_dlgOrder->getContract(),
m_dlgOrder->m_numRows);

Parameter Description

tickerId The ticker id. Must be a unique value. When the market depth
data returns, it will be identified by this tag. This is also used
when canceling the market depth.

contract This object contains attributes used to describe the contract.

numRows Specifies the number of market depth rows to return.
Getting Started with the TWS C++ API 49

Market Data
Chapter 8 - Requesting and Canceling Market Depth
The circled sections in the picture above contain fields that correspond to the parameters in
reqMktDepth(), so the values entered in the dialog are passed to TWS by the parameters in
the reqMktDepth() method.The tickerId parameter corresponds to the Id field in the dialog,
and the numRows parameter specifies the number of market depth rows to return to the API
sample application.

The contract object here is the same one that is used in the reqMktData() method; it contains
properties that correspond to the fields in the Contract Description section of the Request
Market Depth dialog. The contract SocketClient property is used throughout our C++ API. For
a complete list of the properties in the contract object, see the API Reference Guide.

C++ EWrapper Functions that Return Market Depth

There are two C++ EWrapper functions that return market depth: updateMktDepth() and
updateMktDepthL2(). The difference between them is that updateMktDepthL2() returns LII
market depth. Both functions are triggered by the reqMktDepth() method. Market depth data
Getting Started with the TWS C++ API 50

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/contract.htm

Market Data
Chapter 8 - Requesting and Canceling Market Depth
is displayed in the Market Depth dialog, DlgMktDepth, which was initialized by the
updateMktDepth() method.

The updateMktDepth() function and its parameters is shown below. You can see the data that
is returned by looking at the the function’s parameters in the table.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

void CClient2Dlg::updateMktDepth(TickerId id, int position, int operation, int
side, double price, int size)
{

m_dlgMktDepth->updateMktDepth(id, position, "", operation, side, price,
size);

}

Parameter Description

id The ticker ID that was specified in the reqMktDepth() call.

position Specifies the row ID of this market depth entry.

operation Identifies how this order should be applied to the market depth.
Valid values are:·

• 0 = insert (insert this new order into the row
identified by 'position')·

• 1 = update (update the existing order in the row
identified by 'position')·

• 2 = delete (delete the existing order at the row
identified by 'position')

side The side of the book to which this order belongs. Valid values
are:

• 0 = ask

• 1 = bid

price The order price.

size The order size.
Getting Started with the TWS C++ API 51

Market Data
Chapter 8 - Requesting and Canceling Market Depth
The updateMktDepthL2() function returns data in the same parameters as the
updateMktDepth() function, and includes one additional parameter, marketMaker, which
specifies the exchange hosting for each market depth row returned. This function only applies
to customers who have subscribed to LII market data (NYSE’s Open Book and NASDAQ’s Total
View market data subscriptions).

For more details about these events and their parameters, see the
C++ Class EWrapper Functions section of the API Reference Guide.

Canceling Market Depth

To cancel market depth in our C++ sample application, you first close the Market Depth
dialog, then click the Cancel Mkt Depth button in the main sample application window. When
you click the Cancel Mkt Depth button, the Cancel Market Depth dialog appears. Yes, this is
yet another version of the same dialog we saw when we requested market data and market
depth; the only difference is that when you cancel market depth, all the fields in the dialog are
grayed out except Id. Simply click OK to submit cancel market depth.

Let’s see what happens in the code when you do this.

When you click the Cancel Mkt Depth button, the OnCancelMktDepth() method in
client2Dlg.cpp runs. The method is shown below

OnCancelMktDepth() does the following:

• Displays the Cancels Market Depth dialog.

• Calls the C++ method cancelMktDepth() when the OK button is clicked.

void CClient2Dlg::updateMktDepthL2(TickerId id, int position, CString marketMaker,
int operation, int side, double price, int size)

{
m_dlgMktDepth->updateMktDepth(id, position, marketMaker, operation, side, price,

size);
}

void CClient2Dlg::OnCancelMktDepth()
{

// get ticker id
 m_dlgOrder->init(this, "Cancel Market Depth", CDlgOrder::CANCEL_MKT_DEPTH,
m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

// cancel market data
m_pClient->cancelMktDepth(m_dlgOrder->m_id);

}

Getting Started with the TWS C++ API 52

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/class_ewrapper_functions.htm

Market Data
Chapter 8 - Requesting and Canceling Market Depth
The cancelMktDepth() Method

This method has a single parameter, id, which is the same ID that was specified in the
reqMktDepth() call for market depth. The cancelMktDepth() method is shown below.

Next we’ll look at how the sample application handles another kind of data request, the
historical data request.

m_pClient->cancelMktDepth(m_dlgOrder->m_id);
Getting Started with the TWS C++ API 53

Market Data
Chapter 9 - Requesting and Canceling Historical Data
Chapter 9 - Requesting and Canceling
Historical Data

This chapter describes how to request and cancel historical data in the sample application, and
the API methods and parameters behind the process. For requesting historical data, you need
to use the highlighted fields in the Request Historical Data dialog shown here:
Getting Started with the TWS C++ API 54

Market Data
Chapter 9 - Requesting and Canceling Historical Data
What Happens When I Click the Historical Data Button?

Once you connect to TWS using the C++ sample application, you request historical data by
clicking the Historical Data button, then entering contract information in the Contract
Description section, and specifying the details of the historical data query in the Historical Data
fields in the Request Historical Data dialog (shown on the previous page) and clicking OK. The
historical data you request is displayed in the Market and Historical Data text panel as rows of
data.

That’s a simple process from a user’s point of view. But what’s going on behind the scenes?
Getting Started with the TWS C++ API 55

Market Data
Chapter 9 - Requesting and Canceling Historical Data
OnReqHistoricalData()

Just like all the other buttons in the sample application, the Historical Data button has an
event handler associated with it. When you click the Historical Data button, the
OnReqHistoricalData() method defined in client2Dlg.cpp runs. Here is what the code looks
like:

OnReqHistoricalData() does the following:

• Initializes and displays the Request Historical Data dialog. Yes, this is another instance
of the familiar DlgOrder object.

• If ESTIMATES, FINSTAT or SNAPSHOT are entered into the What To Show field in the
dialog, then the event handler calls the C++ method reqFundamentalData() when the
OK button is clicked.

• If anything other than ESTIMATES, FINSTAT or SNAPSHOT is entered into the What To
Show field, the event handler calls the C++ method reqHistoricalData() when the OK
button is clicked.

Don’t worry about the reqFundamentalData() method for now. It has to
do with Reuters global fundamental data, and is outside the scope of our
present discussion.

void CClient2Dlg::OnReqHistoricalData()
{
 m_dlgOrder->init(this, "Request Historical Data",
CDlgOrder::REQ_HISTORICAL_DATA, m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

const CString& whatToShow = m_dlgOrder->m_whatToShow;

if (whatToShow == "estimates" || whatToShow == "finstat" || whatToShow ==
"snapshot") {

m_pClient->reqFundamentalData(m_dlgOrder->m_id, m_dlgOrder->getContract(),
whatToShow);

return;
}

m_pClient->reqHistoricalData(m_dlgOrder->m_id, m_dlgOrder->getContract(),
m_dlgOrder->m_backfillEndDateTime, m_dlgOrder->m_backfillDuration,
m_dlgOrder->m_barSizeSetting, whatToShow, m_dlgOrder->m_useRTH,
m_dlgOrder->m_formatDate);

}

Getting Started with the TWS C++ API 56

Market Data
Chapter 9 - Requesting and Canceling Historical Data
The reqHistoricalData() Method

When you click OK in the sample application to request historical data, the reqHistoricalData()
method sends your request to TWS and, if all the entries are valid, the requested data is
returned by way of the historicalData() EWrapper function.

Now let's see which parameters are used to request historical data. The reqHistoricalData()
method looks like this:

As with the other C++ methods we’ve seen so far, the parameters used to request historical
data correspond to the fields you complete in the Request Historical Data dialog. These fields
are shown in the above screen.

m_pClient->reqHistoricalData(m_dlgOrder->m_id, m_dlgOrder->getContract(),
m_dlgOrder->m_backfillEndDateTime, m_dlgOrder->m_backfillDuration,
m_dlgOrder->m_barSizeSetting, whatToShow, m_dlgOrder->m_useRTH,
m_dlgOrder->m_formatDate);
Getting Started with the TWS C++ API 57

Market Data
Chapter 9 - Requesting and Canceling Historical Data
The parameters are:

This table is for illustrative purposes only and is not intended to portray valid API documentation.

C++ EWrapper Functions that Return Historical Data

There is one C++ EWrapper function that return historical data: historicalData().This function
is triggered by the reqHistoricalData() method. The historicalData() function and parameters

Parameter Description

tickerId The Id of the data request. Must be a unique value. When the
data is received, it will be identified by this Id. This is also used
when canceling the historical data request.

contract This object includes attributes that describe the contract for
which historical data is being requested.

endDateTime This is the end data and time of the historical data request and
corresponds to the field of the same name in the Historical Data
section of the Request Historical Data dialog.
Use the format yyyymmdd hh:mm:ss tmz, where the time zone
is allowed (optionally) after a space at the end.

durationStr This is the time span the request will cover, and is specified
using the format: <integer> <unit>, i.e., 1 D, where valid units
are S (seconds), D (days), W (weeks), M (months), and Y
(years) . If no unit is specified, seconds are used. Also, note
"years" is currently limited to one.

barSize This parameter specifies the size of the bars that will be
returned and corresponds to the field of the same name in the
Request Historical Data dialog. For a complete list of the valid
values for this parameter, see the reqHistoricalDataEx topic in
the API Reference Guide.

whatToShow This specifies the type of data to show (trades, midpoints, bids,
ask, bid/ask, option implied volatility and historical volatility)
and corresponds to the field of the same name in the Request
Historical Data dialog.

useRTH This parameter determines whether to return all data available
during the requested time span (value = 0), or only data that
falls within regular trading hours (value = 1). It corresponds to
the Regular Trading Hours field in the dialog.

formatDate This is the end data and time of the historical data request and
corresponds to the Date Format field in the Request Historical
Data dialog. Valid values include 1, which returns dates
applying to bars in the format:
yyyymmdd{space}{space}hh:mm:dd, or 2, which returns
dates as a long integer specifying the number of seconds since
1/1/1970 GMT.
Getting Started with the TWS C++ API 58

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/reqhistoricaldata.htm

Market Data
Chapter 9 - Requesting and Canceling Historical Data
are shown below. You can see the data that is returned by looking at the event’s parameters
in the tables.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

void CClient2Dlg::historicalData(TickerId reqId, const CString& date,
double open, double high, double low, double close, int volume, int
barCount, double WAP, int hasGaps)
{
 CString displayString;

displayString.Format(
"id=%d date=%s open=%f high=%f low=%f close=%f volume=%d

barCount = %d WAP=%f hasGaps=%d",
reqId, (const char *)date, open, high, low, close, volume,

barCount, WAP, hasGaps);
 int i = m_ticks.AddString(displayString);

// bring into view
int top = i - N < 0 ? 0 : i - N;
m_ticks.SetTopIndex(top);

}

Parameter Description

reqId The ID of the request to which this bar is responding.

date The date-time stamp of the start of the bar. The format is determined
by the reqHistoricalData() formatDate parameter.

open The bar opening price.

high The high price during the time covered by the bar.

low The low price during the time covered by the bar.

close The bar closing price.

volume The volume during the time covered by the bar.

WAP The weighted average price during the time covered by the bar.

hasGaps Identifies whether or not there are gaps in the data.
Getting Started with the TWS C++ API 59

Market Data
Chapter 9 - Requesting and Canceling Historical Data
Historical Data Limitations
This is a good time to talk about the limitations of historical data requests. TWS API historical
data requests are subject to the following limitations:

• Historical data requests can go back one full calendar year.

• Each request is restricted to duration and bar size values that return no more than 2000
bars (2000 bars per request).

All of the API technologies support historical data requests. However, requesting the same
historical data in a short period of time can cause extra load on the backend and subsequently
cause pacing violations. The error code and message that indicates a pacing violation is:

162 - Historical Market Data Service error message: Historical data request pacing violation

The following conditions can cause a pacing violation:

• Making identical historical data requests within 15 seconds;

• Making six or more historical data requests for the same Contract, Exchange and Tick
Type within two seconds.

Also, observe the following limitation when requesting historical data:

• Do not make more than 60 historical data requests in any ten-minute period.
Getting Started with the TWS C++ API 60

Market Data
Chapter 9 - Requesting and Canceling Historical Data
Canceling Historical Data

When you click the Cancel Hist. Data button, the Cancel Historical Data dialog appears. Yes,
this is yet another version of the same dialog saw when we requested market data and market
depth; the only difference is that when you cancel historical data, all the fields in the dialog
are grayed out except Id. Simply click OK to cancel the historical data.

Let’s see what happens in the code when you do this.

When you click the Cancel Hist. Data button, the OnCancelHistData() function defined in
client2Dlg.cpp runs:

The OnCancelHistData method does the following:

• Initializes and displays the Cancel Historical Data dialog.

• If Reuters Fundamental Data was requested, calls the cancelFundamentalData() method
when the OK button is clicked.

• Calls the C++ method cancelHistoricalData() when the OK button is clicked.

The cancelHistoricalData() Method

This method has a single parameter, tickerId, which is the same ID that was specified in the
reqHistoricalData() method that was originally called. The cancelHistoricalData() method is
shown below.

In the next section we’ll look at how the sample application handles another kind of data
request, the real-time bars request.

void CClient2Dlg::OnCancelHistData()
{
 m_dlgOrder->init(this, "Cancel Historical Data",
CDlgOrder::CANCEL_HISTORICAL_DATA, m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

const CString& whatToShow = m_dlgOrder->m_whatToShow;

if(whatToShow == "estimates" || whatToShow == "finstat" || whatToShow ==
"snapshot") {

m_pClient->cancelFundamentalData(m_dlgOrder->m_id);
return;

}

m_pClient->cancelHistoricalData(m_dlgOrder->m_id);
}

m_pClient->cancelHistoricalData(m_dlgOrder->m_id);
Getting Started with the TWS C++ API 61

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
Chapter 10 - Requesting and Canceling Real
Time Bars

This chapter discusses the methods for requesting and canceling real time bars. Real time bars
allow you to get a summary of real-time market data every five seconds, including the
opening and closing price, and the high and the low within that five-second period (using TWS
charting terminology, we call these five-second periods "bars"). You can also get data showing
trades, midpoints, bids or asks. In this chapter, you’ll learn about the methods and
parameters behind the process of requesting real-time bars.

For requesting real time bars, you need to use the fields circled in the Request Real Time Bars
dialog shown below.
Getting Started with the TWS C++ API 62

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
What Happens When I Click the Real Time Bars Button?

You request real time bars by, well, clicking the Real Time Bars button, then entering contract
information in the Contract Description section, and specifying the details of the real-time bar
data query in two fields in the Historical Data section in the Request Real Time Bars dialog
(shown on the previous page) and clicking OK. The data you request is displayed in the Market
and Historical Data text panel as rows of data.

Once again, this is a simple process from a user’s point of view. Let’s take a look at what’s
happening in the code when you request real time bars.

OnReqRealTimeBars()

Just like all the other buttons in the sample application, the Real Time Bars button has an “On”
method associated with it. When you click the button, OnReqRealTimeBars(), defined in
client2Dlg.cpp, runs. Here is what the code looks like:

OnReqRealTimeBars() does the following:

• Initializes and displays the Request Real Time Bars dialog, which is yet another instance
of the DlgOrder object.

• Calls the C++ method reqRealTimeBars() when the OK button is clicked.

void CClient2Dlg::OnReqRealTimeBars()
{
 m_dlgOrder->init(this, "Request Real Time Bars", CDlgOrder::REQ_REAL_TIME_BARS,
m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

m_pClient->reqRealTimeBars(m_dlgOrder->m_id, m_dlgOrder->getContract(),
5 /* TODO: parse and use m_dlgOrder->m_barSizeSetting) */,

 m_dlgOrder->m_whatToShow, m_dlgOrder->m_useRTH > 0);
}

Getting Started with the TWS C++ API 63

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
The reqRealTimeBars() Method

When you click OK in the sample application to request real time bars, the C++ API
EClientSocket method reqRealTimeBars() sends your request to TWS and, if all the entries are
valid, the requested data is returned by way of the realTimeBar() EWrapper function.

Now let's see which parameters are used to request real time bars. The reqRealTimeBars()
method looks like this:

m_pClient->reqRealTimeBars(m_dlgOrder->m_id, m_dlgOrder->getContract(),
5 /* TODO: parse and use m_dlgOrder->m_barSizeSetting) */,
m_dlgOrder->m_whatToShow, m_dlgOrder->m_useRTH > 0);
Getting Started with the TWS C++ API 64

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
As with the other C++ methods we’ve seen so far, the parameters used to request real time
bars correspond to the fields you complete in the Request Real Time Bars dialog. The fields
used to request real time bars are some of the same fields you used to request historical data.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

C++ EWrapper Functions that Return Real Time Bars

There is one function that return historical data: realtimeBar().This event is triggered by the
reqRealTimeBars() method. The realtimeBar() event and its parameters are shown below. You
can see the data that is returned by looking at the the event’s parameters in the tables.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

Parameter Description

tickerId The Id for the request. Must be a unique value. When the data is
received, it will be identified by this Id. This is also used when
canceling the real-time bars data request.

contract This object contains a description of the contract for which real time
bars are being requested.

barSize This parameter specifies the size of the bars that will be returned.
Currently only 5 second bars are supported, if any other value is used,
an exception will be thrown.

whatToShow This specifies the type of data to show (trades, bid, ask, or
midpoints), and corresponds to the field of the same name in the
Historical Data section of the Request Real Time Bars dialog.

useRTH This parameter determines whether to return all data available during
the requested time span (value = 0), or only data that falls within
regular trading hours (the value = 1). It corresponds to the Regular
Trading Hours field in the Historical Data section of the Request Real
Time Bars dialog.

Sub realtimeBar(ByVal tickerId As Integer, ByVal time As Integer,
ByVal open As Double, ByVal high As Double, ByVal low As Double, ByVal
close As Double, ByVal volume As Integer, ByVal WAP As Double, ByVal
Count As Integer)

Parameter Description

reqId The ticker Id of the request to which this bar is responding.

time The date-time stamp of the start of the bar. The format is determined
by the reqHistoricalData() formatDate parameter.

open The bar opening price.

high The high price during the time covered by the bar.

low The low price during the time covered by the bar.

close The bar closing price.

volume The volume during the time covered by the bar.

wap The weighted average price during the time covered by the bar.

count When TRADES historical data is returned, represents the number of
trades that occurred during the time period the bar covers.
Getting Started with the TWS C++ API 65

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
Canceling Real Time Bars

When you click the Can Real Time Bars button, the OnCancelRealTimeBars() method defined
in client2Dlg.cpp runs:

The cmdCancelRealTimeBars_Click button event handler does the following:

• Initializes and displays the Cancel Real Time Bars dialog. Yes, this is another instance of
the same DlgOrder object we’ve seen before.

• Calls the C++ method cancelRealTimeBars() when the OK button is clicked.

void CClient2Dlg::OnCancelRealTimeBars()
{
 m_dlgOrder->init(this, "Cancel Real Time Bars",
CDlgOrder::CANCEL_REAL_TIME_BARS, m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

m_pClient->cancelRealTimeBars(m_dlgOrder->m_id);
}

Getting Started with the TWS C++ API 66

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars
The cancelRealTimeBars() Method

This method has a single parameter, tickerId, which is the same ID that was specified in the
reqRealTimeBars() call for real time bars. The cancelRealTimeBars() method is shown below.

As you can see from the similarity in the code for the trading tasks you’ve looked at so far,
we’ve tried to make the C++ API methods and events as constent and easy to understand as
possible.

The next chapter takes a looks at how to run a market scanner using the C++ API sample
application.

m_pClient->cancelRealTimeBars(m_dlgOrder->m_id);
Getting Started with the TWS C++ API 67

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
Chapter 11 - Subscribing to and Canceling
Market Scanner Subscriptions

This chapter describes the methods and events used for requesting market scanner
parameters, subscribing to a market scanner, and canceling a subscription to a market
scanner in the C++ sample application. When you click the Market Scanner button in the
sample application, the Market Scanner dialog opens, instead of the standard Request/Cancel
dialog we've seen for the other buttons on the sample application.
Getting Started with the TWS C++ API 68

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
What Happens When I Click the Market Scanner Button?

You can do two things related to market scanners in the C++ sample application:

• You can subscribe to a market scanner.

• You can request scanner parameters via an XML document, which is displayed in the
sample application. This XML document describes the valid parameters that a scanner
subscription can have.

To perform either of these tasks, you click the Market Scanner button, then enter information
in the Market Scanner dialog and click the appropriate button. For a market scan, fill in as
many of the fields in the dialog as you need (especially the Scan Code!), then click the
Subscribe button. To request available scan parameters, click the Request Parameters button.

Market scan results are displayed in the Market and Historical Data text panel as shown below.
Market scanner parameters (the XML file) are displayed in the TWS Server Responses text
panel.

This is a fairly simple process from a user’s point of view. There’s more going on behind the
scenes, however, so let’s take a look.

OnMarketScanner()

Just like all the other buttons in the sample application, the Market Scanner button has an
“On” method associated with it. When you click the button, OnMarketScanner(), defined in
client2Dlg.cpp, runs. Here is what the code looks like:

void CClient2Dlg::OnMarketScanner()
{

CDlgScanner dlgScanner(m_scannerSubscr.get(), m_pClient);
dlgScanner.DoModal();

}

Getting Started with the TWS C++ API 69

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
OnMarketScanner() really does only one thing: it displays the Market Scanner dialog, or as its
known in the code, DlgScanner. To find out how the sample application actually gets the
scanner parameters and subscribes to a market scanner, we have to look at the Market
Scanner dialog code in DlgScanner.cpp.

Market Scanner Dialog

The process of filling in the fields of the Market Scanner dialog is pretty straightforward.
However, the code for the Market Scanner dialog does a few things in which we’re interested:

• Just as we saw in the the client2Dlg.cpp source file, DlgScanner.cpp includes a
MESSAGE MAP section that maps the buttons in the Market Scanner dialog to related
“On” methods. These “On” methods are not part of the C++ API, but are part of the
code required to run the C++ API sample application.

• Runs the OnRequestParameters() method when you click the Request Parameters
button in the Market Scanner dialog.

• Runs the OnSubscribe() method when you click the Subscribe button.

• Runs the OnCancelSubscription() method when you click the Cancel Subscription
button. (We’ll learn more about how to cancel a market scanner subscription later in
this chapter.)

OnRequestParameters() calls the reqScannerParameters() EClientSocket method when you
click the Request Parameters button.

OnSubscribe() calls the reqScannerSubscription() EClientSocket method when you click the
Subscribe button.

Turn the page to learn about these two methods!

Requesting Scanner Parameters

As we noted earlier, when you click the Request Parameters button in the Market Scanner
dialog, the OnRequestParameters() method calls the reqScannerParameters() method, which
requests an XML string that describes all possible market scans and their available
parameters.

As you can see, this method has no parameters. The XML document containing the scanner
parameters is returned from TWS by the scannerParameters() EWrapper function, which is
defined in client2Dlg.cpp and is shown below.

void CDlgScanner::OnRequestParameters() {
OnOK();
m_client->reqScannerParameters();

}

void CClient2Dlg::scannerParameters(const CString &xml)
{

static CString myTitle("SCANNER PARAMETERS: ") ;
 DisplayMultiline(m_orderStatus, myTitle, xml);
}

Getting Started with the TWS C++ API 70

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
The scannerParameters() function has a single parameter, xml, which you have probably
figured out is the XML document that contains the scanner parameters, including all of the
current scan codes that are required to subscribe to the market scanners. This is the XML
document that is displayed in the TWS Server Responses text panel of the sample application
and a portion of which is shown below.

Subscribing to a Market Scanner

When you click the Subscribe button in the Market Scanner dialog, the OnSubscribe() method
calls the reqScannerSubscription() method, which is shown below along with its parameters,

This table is for illustrative purposes only and is not intended to portray valid API documentation.

As you can see from the table above, this method has two parameters. The tickerId parameter
corresponds to the ID field in the Market Scanner dialog. The subscription parameter is
actually another EClientSocket property called ScannerSubscription, and it contains the
properties that correspond to the fields in the Market Scanner dialog, such as Instrument and
Scan Code.

For a complete list of the properties in the subscription structure, see the API Reference
Guide.

void CDlgScanner::OnSubscribe() {
OnOK();
m_client->reqScannerSubscription(m_id, *m_subscription);

}

Parameter Description

tickerId The ticker id. Must be a unique value. When the market scanner
results are returned, they will be identified by this tag. This is
also used when unsubscribing from the scanner.

subscription This object contains the scanner subscription parameters.
Getting Started with the TWS C++ API 71

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/scannersubscription.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/scannersubscription.htm

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
C++ EWrapper Functions that Return Market Scanner Results

The market scan results are returned by the scannerData() EWrapper function, which is shown
below along with its parameters:.

The contractDetails parameter is another EClientSocket property and it contains information
about the contract whose data is included in the market scanner results. For more information
about this and other EClientSocket properties, see the API Reference Guide.

void CClient2Dlg::scannerData(int reqId, int rank, const ContractDetails
&contractDetails, const CString &distance, const CString &benchmark, const
CString &projection, const CString &legsStr) {
 Contract contract = contractDetails.summary;

// create string
CString str;
str.Format("id =%i rank=%i conId=%i symbol=%s secType=%s expiry=%s

strike=%f right=%s exchange=%s currency=%s localSymbol=%s marketName=%s
tradingClass=%s distance=%s benchmark=%s projection=%s legsStr=%s",
 reqId,
 rank,

contract.conId,
 contract.symbol,
 contract.secType,
 contract.expiry,
 contract.strike,
 contract.right,
 contract.exchange,
 contract.currency,
 contract.localSymbol,
 contractDetails.marketName,
 contractDetails.tradingClass,
 distance,
 benchmark,
 projection,

legsStr);
 int i = m_ticks.AddString(str);

// bring into view
int top = i - N < 0 ? 0 : i - N;
m_ticks.SetTopIndex(top);

}

Parameter Description

reqId The ticker ID of the request to which this row is responding.

rank The ranking within the response of this bar.

contractDetails This object contains a full description of the contract.

distance Varies based on query.

benchmark Varies based on query.

projection Varies based on query.

legsStr Describes combo legs when scan is returning EFP
Getting Started with the TWS C++ API 72

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/socketclient_properties.htm

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
The scannerDataEnd() Function

There is one additional event used in conjunction with scanner subscriptions:
scannerDataEnd(). This function is called after a full snapshot of a scanner window has been
received and functions as a sort of end tag. It helps define the end of one scanner snapshot
and the beginning of the next. scannerDataEnd() has one parameters: reqId, which is the ID
of the market scanner request being closed by this parameter.

The scannerDataEnd() function is shown below.

void CClient2Dlg::scannerDataEnd(int reqId)
{

// create string
CString str;
str.Format("id =%i =============== end ===============", reqId);

 int i = m_ticks.AddString(str);

// bring into view
int top = i - N < 0 ? 0 : i - N;
m_ticks.SetTopIndex(top);

}

Getting Started with the TWS C++ API 73

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
Cancel a Market Scanner Subscription
To cancel a market scanner subscription in the C++ sample application, first click Market
Scanner button, then click the Cancel Subscription button in the Market Scanner dialog. When
you click this button, the OnCancelSubscription() method defined in DlgScanner.cpp runs.

The OnCancelSubscription() method calls the cancelScannerSubscription() EWrapper function,
shown below, which cancels the market scanner subscription.

The next chapter takes a look at one additional type of data that you can get from TWS via our
C++ API: contract data.

void CDlgScanner::OnCancelSubscription() {
OnOK();
m_client->cancelScannerSubscription(m_id);

}

m_client->cancelScannerSubscription(m_id);
Getting Started with the TWS C++ API 74

Market Data
Chapter 12: Requesting Contract Data
Chapter 12: Requesting Contract Data
This chapter shows you how to request contract data, including details such as the local
symbol, conid, trading class, valid order types, and exchanges. We'll walk you through
everything that happens from the time you click the Req Contract Data button in the sample
application, to the moment you're taking in the fascinating details of your desired contract. It
all happens fast, so pay attention!

To request contract data using the C++ sample application, you'll need to enter data in the
fields circled in the Request Contract Details dialog pictured below. The Request Contract
Details dialog appears when you click the Req Contract Data button.
Getting Started with the TWS C++ API 75

Market Data
Chapter 12: Requesting Contract Data
What Happens When I Click the Req Contract Data Button?

In the C++ sample application, you request contract details by clicking the Req Contract Data
button, then entering an underlying and other information in the Contract Description fields of
the Request Contract Details dialog, shown on the previous page. When you click OK, the
contract data you requested are displayed in the TWS Server Responses text panel, as shown
here:

Let’s take a look at the code behind this simple process.

OnReqContractDetails()

When you click the Req Contract Data button, the OnReqContractDetails() method defined in
client2Dlg.cpp runs. Here is what that method looks like:

void CClient2Dlg::OnReqContractDetails()
{

// run dlg box
 m_dlgOrder->init(this, "Request Contract Details",
CDlgOrder::REQ_CONTRACT_DETAILS, m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

// request contract details
m_pClient->reqContractDetails(m_dlgOrder->m_id,

m_dlgOrder->getContract());

}

Getting Started with the TWS C++ API 76

Market Data
Chapter 12: Requesting Contract Data
OnReqContractDetails() does the following:

• Initializes and displays the Request Contract Details dialog, which is another instance of
our old friend DlgOrder.

• Calls the C++ method reqContractDetails() when the OK button is clicked.

The reqContractDetails() Method

Your contract data request is passed to TWS via the reqContractDetails() method.

This method contains two parameters, reqId and Contract. reqId passes the ID of the data
request to TWS and ensures that responses are matched to requests if several requests are in
process. If you recall from earlier chapters, the Contract parameter is an EClientSocket
property that contains all the attributes used to describe the requested contract, which in this
case means all the values you entered in the Contract Description section of the Request
Contract Details dialog.

m_pClient->reqContractDetails(m_dlgOrder->m_id,
m_dlgOrder->getContract());

Parameter Description

reqId The ID of the data request. Ensures that responses are
matched to requests if several requests are in process.

contract This object includes attributes that describe the contract.
Getting Started with the TWS C++ API 77

Market Data
Chapter 12: Requesting Contract Data
C++ EWrapper Functions that Return Contract Details

The actual contract data is returned from TWS via the contractDetails() EWrapper function.

This function contains two parameters, reqId and contractDetails. Just as in the method that
requested the contract data, the reqID parameter here contains the ID of the data request to
ensure matching with the correct request. The contractDetails parameter is another
EClientSocket property (like Contract or ScannerSubscription) that contains all the attributes
used to describe the requested contract, including the valid order types and exchanges on
which the requested contract can be traded.

For more details about the contractDetails structure, see the API Reference Guide.

The contractDetailsEnd() Function

There is one additional contract data EWrapper function used in the C++ API, the
contractDetailsEnd() event. This event has one parameter, reqId, and is called once all
contract details for a given request are received. This defines the end of an option chain.

contractDetailsEnd() displays the end marker for the contract information displayed in the
TWS Server Responses text panel of the sample application main window.

This concludes our discussion of market and contract data-related trading tasks. The next
section describes how to place orders and exercise options using the sample application and
C++ API.

void CClient2Dlg::contractDetails(int reqId, const ContractDetails
&contractDetails)

void CClient2Dlg::contractDetailsEnd(int reqId)
{

CString str;
str.Format("id =%i =============== end ===============", reqId);

int i = m_orderStatus.AddString(str);

// bring into view
int top = i - N < 0 ? 0 : i - N;
m_orderStatus.SetTopIndex(top);

}

Getting Started with the TWS C++ API 78

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/contractdetails1.htm#HT_ContractDetails

Market Data
Chapter 12: Requesting Contract Data
Getting Started with the TWS C++ API 79

Market Data
Chapter 12: Requesting Contract Data
Getting Started with the TWS C++ API 80

5
Orders and Executions

This section describes how the C++ API sample application handles orders. We'll show you the
methods, events and parameters behind such trading tasks as placing and canceling orders,
exercising opions and viewing open orders and executions.

Here's what you'll find in this section:

• Chapter 13 - Placing an Order

• Chapter 14 - Exercising Options

• Chapter 15 - Using Extended Order Attributes

• Chapter 16 - Requesting Open Orders

• Chapter 17 - Requesting Executions
Getting Started with the TWS C++ API 81

Orders and Executions
Chapter 13: Placing and Canceling an Order
Chapter 13: Placing and Canceling an Order
In this chapter, we describe what happens when you place and cancel an order. When you
click the Place Order button, another version of the standard Request/Cancel dialog (the
dlgOrder object) opens. To place an order, you fill in the fields circled in the dialog as shown
below.
Getting Started with the TWS C++ API 82

Orders and Executions
Chapter 13: Placing and Canceling an Order
What Happens When I Place an Order?
Let's take a look at what happens when you place an order. First we’ll look at how a typical
user would place an order using the C++ sample application, then we’ll look at the code
behind that process.

When you click the Place Order button, the Place Order dialog appears. As we mentioned
earlier, this is yet another version of the DlgOrder object. You enter the contract information in
the Contract Description fields, enter the order information in the Order Description fields,
then click the OK button to place the order. Your order information is displayed in the TWS
Server Responses text panel on the sample application window, along with the execution
details and the order status.

There are additional order options available in the C++ sample
application that are supported by the API. You can enter combo
orders or Algo parameters for IBAlgo orders. These options are
described later in this chapter.

That’s pretty straightforward. Now let’s see how the code works during this process.
Getting Started with the TWS C++ API 83

Orders and Executions
Chapter 13: Placing and Canceling an Order
OnPlaceOrder()

When you click the Place Order button, the OnReqContractDetails() method defined in
client2Dlg.cpp runs. Here is what that method looks like:

The placeOrder() Method

We’ve already seen several cases of On methods that call a corresponding EClientSocket
method and display the appropriate dialog in the sample application. Placing orders is
different. OnPlaceOrder() only calls the placeOrder() method, which in turn displays the Place
Order dialog, and passes your contract and order information to TWS. Here is the placeOrder()
method, defined in client2Dlg.cpp:

placeOrder() has three parameters: id, contract and order. id is the order Id. When the status
of your order is returned from TWS, it will be identified by this Id. The contract parameter is
the same EClientSocket property that contains all the attributes used to describe the
requested contract, which in this case means all the values you entered in the Contract
Description section of the Place Order dialog. The order parameter is another EClientSocket
property that contains all the attributes used to describe your order, which correspond to the
fields in the Order Description section of the Place Order dialog.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

void CClient2Dlg::OnPlaceOrder()
{

placeOrder(/* whatIf */ false);
}

void CClient2Dlg::placeOrder(bool whatIf)
{

// run order box
 m_dlgOrder->init(this, "Place Order", CDlgOrder::ORDER,
m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

Order& order = m_dlgOrder->getOrder();

// save old and set new value of whatIf attribute
bool savedWhatIf = order.whatIf;
order.whatIf = whatIf;

// place order
m_pClient->placeOrder(m_dlgOrder->m_id, m_dlgOrder->getContract(),

order);

 // restore whatIf attribute
 order.whatIf = savedWhatIf;
}

Parameter Description

id The order Id. You must specify a unique value. This tag is also
used when canceling the order.

contract This object contains attributes used to describe the contract.

order This object contains attributes that describe the details of the
order.
Getting Started with the TWS C++ API 84

Orders and Executions
Chapter 13: Placing and Canceling an Order
For a complete list of the properties in the order and contract structures, see the API
Reference Guide.
Getting Started with the TWS C++ API 85

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/socketclient_properties.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/socketclient_properties.htm

Orders and Executions
Chapter 13: Placing and Canceling an Order
C++ EWrapper Functions that Return Order Data
Once the order has been placed, and assuming there are no errors in the order, the C++
EWrapper function orderStatus() returns the current status of the order from TWS. The
orderStatus() function and a list of all its parameters are shown below.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

void CClient2Dlg::orderStatus(OrderId orderId, const CString &status, int
filled, int remaining, double avgFillPrice, int permId, int parentId,
double lastFillPrice, int clientId, const CString& whyHeld)
{

// create string
CString str;
str.Format("orderId=%i clientId=%i permId=%i status=%s filled=%i

remaining=%i avgFillPrice=%f lastFillPrice=%f parentId=%i whyHeld=%s",
orderId, clientId, permId, (const char *)status, filled, remaining,

avgFillPrice, lastFillPrice, parentId, (const char*)whyHeld);

// add to listbox
int i = m_orderStatus.AddString(str);

// move into view
int top = i - N < 0 ? 0 : i - N;
m_orderStatus.SetTopIndex(top);

}

Parameter Description

id The order ID that was specified previously in the call to
placeOrder()

status The order status. See The status Parameter later in this
chapter for a list of all possible order statuses.

filled Specifies the number of shares that have been executed.

remaining Specifies the number of shares still outstanding.

avgFillPrice The average price of the shares that have been executed. This
parameter is valid only if the filled parameter value is greater
than zero. Otherwise, the price parameter will be zero.

permId The TWS id used to identify orders. Remains the same over
TWS sessions.

parentId The order ID of the parent order, used for bracket and auto
trailing stop orders.

lastFilledPrice The last price of the shares that have been executed. This
parameter is valid only if the filled parameter value is greater
than zero. Otherwise, the price parameter will be zero.

clientId The ID of the client (or TWS) that placed the order. Note that
TWS orders have a fixed clientId and orderId of 0 that
distinguishes them from API orders.

whyHeld This field is used to identify an order held when TWS is trying to
locate shares for a short sell. The value used to indicate this is
'locate'.
Getting Started with the TWS C++ API 86

Orders and Executions
Chapter 13: Placing and Canceling an Order
However, that’s not all that happens when you place an order in the sample application. The
status of your order, along with some other useful information, appears in the TWS Server
Responses text panel. The additional information returned from TWS and displayed in the
sample application includes:

• Open order information (if the order is not filled immediately)

• Details about the contract you ordered

• Details about the order

• List of extended attribute and their values as applied to your order

• Execution details (when the order is filled)

• Order state information

The screens on the following pages show all of the information that is returned from TWS and
displayed in the TWS Server Responses text panel in response to a sample BUY LIMIT order
for 100 shares of DELL stock.

Open Order Information and Contract Details

If the order is not filled immediately, it is an open order. Open order information is returned by
the EWrapper function openOrder(), about which we will learn more later in this chapter. For
now, we’re only interested in what it returns to the sample application, which is passed back
through these parameters and shown in the screen below:

This table is for illustrative purposes only and is not intended to portray valid API documentation.

Parameter Description

orderID The order ID assigned by TWS. Use to cancel or update the order.

contract This object includes attributes that describe the contract.

order This object includes attributes that describe the details of the open
order.

orderState This object includes attributes that describe both pre and post trade
margin and commission data.
Getting Started with the TWS C++ API 87

Orders and Executions
Chapter 13: Placing and Canceling an Order
The order ID and the contract details of our fictional DELL order are displayed in the sample
application as shown below.

And the order details are displayed as shown here:

For more information about the openOrder() function, see the API Reference Guide.
Getting Started with the TWS C++ API 88

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/openorder.htm

Orders and Executions
Chapter 13: Placing and Canceling an Order
Extended Attributes

We’ll learn more about extended attributes later in this chapter, but just remember that these
attributes are part of the order EClientSocket property, which we just saw is returned wiht the
openOrder() EWrapper function.

For more information about the order EClientSocket property, see the API Reference Guide.

Execution Details

When the order is filled, execution details are sent from TWS in the EWrapper function
execDetails() and displayed in the sample application as shown below.

We’ll learn a bit more about executions later in this chapter.
Getting Started with the TWS C++ API 89

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/order.htm

Orders and Executions
Chapter 13: Placing and Canceling an Order
Order State Information

Here is the order state information returned by the openOrder() function.

Note the last line in the screen; it contains your order status, and the data displayed on that
line correspond to the parameters in the EWrapper function orderStatus().
Getting Started with the TWS C++ API 90

Orders and Executions
Chapter 13: Placing and Canceling an Order
The status Parameter

As we mentioned earlier, the status parameter in the orderStatus() function returns the status
of your order and the sample application displays that information in the TWS Server
Responses text panel. The possible values for the status parameter, and therefore, the
possible order statuses, are:

• PendingSubmit - you have transmitted the order, but have not yet received
confirmation that it has been accepted by the order destination.

• PendingCancel - you have sent a request to cancel the order but have not yet received
cancel confirmation from the order destination. At this point, your order is not
confirmed canceled. You may still receive an execution while your cancellation request
is pending.

Note: PendingSubmit and PendingCancel order statuses are not sent by the system and
should be explicitly set by the API developer when an order is canceled.

• PreSubmitted - a simulated order type has been accepted by the system and that this
order has yet to be elected. The order is held in the system until the election criteria are
met. At that time the order is transmitted to the order destination as specified.

• Submitted - your order has been accepted at the order destination and is working.

• Cancelled - the balance of your order has been confirmed canceled by the system. This
could occur unexpectedly when the destination has rejected your order.

• Filled - the order has been completely filled.

• Inactive - the order has been accepted by the system (simulated orders) or an
exchange (native orders) but that currently the order is inactive due to sytem,
exchange or other issues.

• ApiPending - the order has been reported to TWS by the API using reqAllOpenOrders()
or reqOpenOrders().

• ApiCancelled - the order reported by the API has been cancelled.
Getting Started with the TWS C++ API 91

Orders and Executions
Chapter 13: Placing and Canceling an Order
Canceling an Order

To cancel an order, click the Cancel Order button on the main sample window, then click the
OK button in the Place Order dialog. When you cancel your order, make sure the Id is the
same as the orderID for your order (you can find this in the order status display in the TWS
Server Responses text panel).

Let’s take a look at the code behind this operation.

When you click the Cancel Order button, the OnCancelOrder() method defined in
client2Dlg.cpp runs.

The OnCancelOrder() method does the following:

• Displays the Cancel Order dialog (yes, this is yet another instance of our favorite dialog,
DlgOrder.

• Calls the C++ method cancelOrder() when the OK button in the dialog is clicked.

void CClient2Dlg::OnCancelOrder()
{

// get order id
 m_dlgOrder->init(this, "Cancel Order", CDlgOrder::CANCEL_ORDER,
m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

// cancel order
m_pClient->cancelOrder(m_dlgOrder->m_id);

}

Getting Started with the TWS C++ API 92

Orders and Executions
Chapter 13: Placing and Canceling an Order
The cancelOrder() Method

This method has a single parameter, id, which is the same order ID that was specified in the
placeOrder() method. The cancelOrder() method is shown below.

That’s a lot of information about placing orders, but we’re not done with orders yet! Turn the
page to learn more about modifying orders and placing What-If orders.

Modifying an Order
To modify an order using the API, resubmit the order you want to modify using the same order
id, but with the price or quantity modified as required. Only certain fields such as price or
quantity can be altered using this method. If you want to change the order type or action, you
will have to cancel the order and submit a new order.

Requesting "What-If" Data before You Place an Order

Another feature supported by the C++ sample application is the ability to request margin and
commission "what if" data before you place an order. This means that you can click the What
If button in the sample application, set up your order as if you were actually placing it, then
see what the margins and commissions would be if the trade went through. The information is
displayed in the TWS Server Responses text panel in the sample application.

Now we can go back and look at the methods in client2Dlg.cpp that we mentioned earlier.
There is another On method called OnWhatIf() that does one thing: it calls the placeOrder()
method but sets the boolean parameter whatIf to TRUE, which causes your order to NOT be
placed and the margin and commission information to be displayed in the sample application.

Here are the lines of code that call the placeOrder() method in client2Dlg.cpp. To summarize:
if you want to get what-if data, you click the What If button in the sample application, which
sets the whatIf parameter to true. If you want to actually place your order, you click the Place
Order button, which sets the whatIf parameter to true.

By the way, the whatIf parameter comes from our Order EClientSocket property, which if you
recall from earlier in this chapter, is one of the parameters in the placeOrder() method.

m_pClient->cancelOrder(m_dlgOrder->m_id);

void CClient2Dlg::OnWhatIf()
{

placeOrder(/* whatIf */ true);
}

void CClient2Dlg::OnPlaceOrder()
{

placeOrder(/* whatIf */ false);
}

Getting Started with the TWS C++ API 93

Orders and Executions
Chapter 13: Placing and Canceling an Order
Placing Combo Orders
The TWS C++ API supports combination orders, which means that you can use the C++ API
sample application to place combo orders that include options, stock and futures legs (or you
can build your own application to place combo orders using the methods, events and
parameters in the API).

To place a combo order in the sample application, simply place an order as you normally
would by clicking the Place Order button, fill in the fields in the Ticker Description and Order
Description sections of the Place Order dialog, then click the Combo Legs button as shown
below, and add combo legs to the order in the Combination Order Legs dialog
Getting Started with the TWS C++ API 94

Orders and Executions
Chapter 13: Placing and Canceling an Order
And here is the Combination Order Legs dialog:

To add combo legs, simply fill in the fields in the Combo Leg Details section of the dialog, then
click Add. Each leg you add appears in the list of combo legs on the left side of the dialog. You
can remove unwanted legs by clicking the row to select it, then clicking the Remove button.
When you click OK, you are returned to the Place Order dialog, where you click OK to place
your order.

How is this process different in the code from the standard order placement? Let’s find out!
Getting Started with the TWS C++ API 95

Orders and Executions
Chapter 13: Placing and Canceling an Order
Combo Legs Processing

As you might have expected, the first part of this process is the same as when you place a
standard order: the OnPlaceOrder() method runs and does its thing, and placeOrder() method
runs and does ITS thing, the Place Order dialog is displayed, and your input values are stored
as parameters in placeOrder(). But when you click the Combo Legs button in the Place Order
dialog, a different On method defined in DlgOrder.cpp (the Order dialog),
OnBtnAddComboLegs() runs and displays the Combination Order Legs dialog. The actual
combo leg list defined by you in the dialog is created by the code in the Combination Order
Legs dialog (DlgComboLegs.cpp), then passed to TWS as a property of the Contract parameter
in placeOrder(). Whew!

Here is what the OnBtnAddComboLegs() method looks like:

Just as in standard orders, once the order has been placed, and assuming there are no errors
in the order, the C++ event orderStatus() returns the current status of the order from TWS,
openOrder() returns information about open orders and execDetails() returns execution
information.

void CDlgOrder::OnBtnAddComboLegs()
{

UpdateData();

ComboLegList comboLegs;
Contract::CloneComboLegs(comboLegs, m_comboLegs);

CDlgComboLegs dlgComboLegs(comboLegs, m_exchange);
if (dlgComboLegs.DoModal() == IDOK)

m_comboLegs.swap(comboLegs);

Contract::CleanupComboLegs(comboLegs);
}

Getting Started with the TWS C++ API 96

Orders and Executions
Chapter 13: Placing and Canceling an Order
Placing Algo Orders
The TWS C++ API supports IBAlgo orders for US Equities and US Equity Options. Use IBAlgo
orders to automatically balance market impact with risk on your large volume orders.

To place an IBAlgo order in the sample application, simply place an order as you normally
would by clicking the Place Order button, fill in the fields in the Ticker Description and Order
Description sections of the Place Order dialog, then click the Algo Params button as shown
below and add an Algo strategy and Algo parameter/value pairs in the Algo Order Parameters
dialog..
Getting Started with the TWS C++ API 97

Orders and Executions
Chapter 13: Placing and Canceling an Order
The Algo Order Parameters dialog appears:

To add Algo parameters to an order, type the name of the Algo strategy in the Strategy field,
then type a parameter in the Param field, the value for the parameter in the Value field, and
click Add. Repeat for each Algo parameter/value pair you want to add. For example, you might
want to minimize market impact by slicing an options order over time as defined by the Max
Percentage value. In this case you would type minImpact in the Strategy field, then type
maxPctVol in the Param field and a percentage in the Value field. When you click OK, the Algo
parameters are added to your order.

That’s what happens on the user side of things; now let’s take a look at the code.
Getting Started with the TWS C++ API 98

Orders and Executions
Chapter 13: Placing and Canceling an Order
Algo Order Processing

As you might have expected, the first part of this process is the same as when you place a
standard order: the OnPlaceOrder() method runs and does its thing, and placeOrder() method
runs and does ITS thing, the Place Order dialog is displayed, and your input values are stored
as parameters in placeOrder(). But when you click the Algo Params button in the Place Order
dialog, a different On method defined in DlgOrder.cpp (the Order dialog), OnBtnAlgoParams()
runs and displays the Algo Order Parameters dialog. The actual Algo strategy and
parameter/value list defined by you in the dialog is created by the code in the Algo Order
Parameters dialog (DlgAlgoParams.cpp), then passed to TWS as properties of the Order
parameter in placeOrder() (specifically, the algoStrategy and algoParams properties).

Here is what the OnBtnAlgoParams() method looks like:

Just as in standard orders, once the order has been placed, and assuming there are no errors
in the order, the C++ event orderStatus() returns the current status of the order from TWS,
openOrder() returns information about open orders and execDetails() returns execution
information.

You can also place Delta Neutral orders using the C++ API sample
application. However, that type of order is beyond the scope of this
guide. For more information, see the API Reference Guide.

That’s enough about orders. The next chapter describes what happens when you exercise
options using the C++ API.

void CDlgOrder::OnBtnAlgoParams()
{

CDlgAlgoParams dlg(m_order->algoStrategy, m_order->algoParams);
if (dlg.DoModal() == IDOK) {

// do nothing - params passed by ref
// and is being updated inside dialog

}
}

Getting Started with the TWS C++ API 99

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide.htm

Orders and Executions
Chapter 14: Exercising Options
Chapter 14: Exercising Options
This chapter discusses how the C++ sample application exercises options prior to expiration,
and instructs options to lapse. We'll also show you the methods, events and parameters
behind the Options Exercise area of the sample application. The fields you complete in the
Exercise Options dialog (another instance of the dlgOrder object, by the way) are shown
below.
Getting Started with the TWS C++ API 100

Orders and Executions
Chapter 14: Exercising Options
What Happens When I Click the Exercise Options Button?

When you click the Exercise Options button, the Exercise Options dialog appears. As we
mentioned earlier, this is yet another version of the dlgOrder object. You enter the contract
information in the Contract Description fields, then enter the option exercise information in the
fields in the Exercise Options section (both sections are circled on the screen pictured on the
previous page). In the Action field, enter 1 to exercise the option specified in the Contract
Description fields, or 2 to let the option expire. Enter the number of contracts to either
exercise or let expire in the Number of Contracts field. In the Override field, enter 1 to
override the system’s natural action, or 2 to not override. Click the OK button to execute your
desired action (exercise or expire the option).

So what happens in the code when you do all this?

OnExerciseOptions()

When you click the Exercise Options button, the OnExerciseOptions() method defined in
client2Dlg.cpp runs. Here is what the code for this On method looks like:

OnExerciseOptions() does the following:

• Initializes and displays the Exercise Options dialog.

• Calls the C++ method exerciseOptions() when the OK button is clicked.

void CClient2Dlg::OnExerciseOptions()
{
 m_dlgOrder->init(this, "Exercise Options", CDlgOrder::EXERCISE_OPTIONS,
m_managedAccounts);

if(m_dlgOrder->DoModal() != IDOK) return;

m_pClient->exerciseOptions(
m_dlgOrder->m_id,
m_dlgOrder->getContract(),
m_dlgOrder->m_exerciseAction,
m_dlgOrder->m_exerciseQuantity,
m_dlgOrder->getOrder().account,
m_dlgOrder->m_exerciseOverride);

}

Getting Started with the TWS C++ API 101

Orders and Executions
Chapter 14: Exercising Options
The exerciseOptions() Method

When you click OK in the Exercise Options dialog, the exerciseOptions() method sends your
request to TWS and, if all the entries are valid, your desired action is executed.

Now let's see which parameters are used when you exercise an option. The exerciseOptions()
method looks like in our code:

Let’s take a look at the parameters of this method.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

As you can see from the table above, this method has several parameters that correspond to
the fields in the Exercise Options dialog, including our old friend contract, the EClientSocket
property used throughout our API to describe a specific contract. This means that the values
you entered in the dialog are passed to TWS by the parameters in the exerciseOptions()
method.

In this case, there is no event that returns values from TWS.

m_pClient->exerciseOptions(
m_dlgOrder->m_id,
m_dlgOrder->getContract(),
m_dlgOrder->m_exerciseAction,
m_dlgOrder->m_exerciseQuantity,
m_dlgOrder->getOrder().account,
m_dlgOrder->m_exerciseOverride);

Parameter Description

tickerId The Id for the option exercise request.

contract This object includes attributes that describe the contract.

exerciseAction This represents the action you want to take on the specified option. A
value of 1 indicates that you want to exercise the option. 2 means
that you want to let the option expire.

exerciseQuantity The number of contracts to be exercised.

account The IB account for institutional orders.

override This parameter specifies whether your setting will override the
system's natural action. For example, if your action is "exercise" and
the option is not in-the-money, by natural action the option would
not exercise. If you have override set to "yes" the natural action
would be overridden and the out-of-the money option would be
exercised. Values are 0 don’t override or 1 to override.
Getting Started with the TWS C++ API 102

Orders and Executions
Chapter 15: Extended Order Attributes
Chapter 15: Extended Order Attributes
This chapter discusses how to apply extended, or non-essential, order attributes to your order.
This sample action is different from many of the others we've looked at, as the extended order
attributes for the C++ API are actually included in the order object, which you remember from
our discussion on placing orders. For ease of use, the sample application has a separate dialog
in which you can assign values to the extended order attributes. So although you will see a
new dialog when you click the Extended button, the selections you're setting do not come from
a new API method.

Here is the Extended Order Attributes dialog:
Getting Started with the TWS C++ API 103

Orders and Executions
Chapter 15: Extended Order Attributes
What Happens When I Click the Extended Button?

Extended order attributes have no function by themselves. However, any value you enter in
the Extended Order Attributes dialog WILL be applied to every subsequent order you place in
the sample application (until you either change or remove the value). In fact, you might
remember from our earlier discussion of the types of data returned by TWS when you place an
order that list of Extended Attributes displayed in the TWS Server Responses text panel. In
case you forgot, here it is again:

You use these attributes to place advanced orders such as trailing stop limit, VOL and scale
orders, as well modify other values for orders. Most important however is the fact that only
those extended order attributes with values are applied to your order; the rest are ignored.

For a complete description of all of the extended order attributes in
the C++ API, see the Extended Order Attributes topic in the API
Reference Guide.

The code behind this process is fairly simple. When you click the Extended button, the
OnExtord() method defined in client2Dlg.cpp runs. This method simply displays the Extended
Order Attributes dialog, called dlgExtOrd in the code.

When you click the OK button in the Extended Order Attributes dialog, the values entered in
the fields in the dialog are passed to the order object, which if you recall stores all the
information about your order.

That's all the Extended button does. Until you place an order, the extended attributes are just
that - attributes just sitting there waiting for something to happen. But once you create and
place an order, the values you entered/modified in the Extended Order Attributes dialog are
used in your order, and will continue to be applied to every order until you change them.

Next we’ll take a look at some of the other buttons in the sample application.
Getting Started with the TWS C++ API 104

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/api/extended_order_attributes.htm

Orders and Executions
Chapter 16: Requesting Open Orders
Chapter 16: Requesting Open Orders
In this chapter, we're going to take a look at three related tasks in the C++ API sample
application:

• Requesting Open Orders

• Requesting All Open Orders

• Requesting Auto Open Orders

How are they related?

Well, obviously they all give you information about open orders. The difference between them
is the Client ID, which you set (or not!) when you connect to TWS.

Running Multiple API Sessions
You can connect up to eight API sessions to one TWS client, but the catch is that you have to
assign a new client ID for each API session. Therefore, any orders sent from these clients can
be tracked through the life of the order, and everyone knows where they came from and who's
responsible for them. So be careful!:

If you happen to have TWS up and running now and want to try this out, simply run multiple
sample API sessions as described in the following steps:

1 Click the Connect button and connect to the first session. Note that the Client ID is set
to "0."

2 Do the same for another session. If you don't change anything, you'll see that you are
not able to connect to this second session. In the Errors and Messages text panel on the
sample application, the API will kindly tell you "Already connected."

3 Now try it with a unique Client ID. Click Connect again, only this time type 1 (or any
other unique Client ID) in the Client ID field, then click OK.
Getting Started with the TWS C++ API 105

Orders and Executions
Chapter 16: Requesting Open Orders
The Difference between the Three Request Open Orders Buttons
Now you're ready to learn the difference between the three Request Open Orders
methods/buttons:

• Request Open Orders shows you any open orders made from that client, and if it's the
"0" client ID client, you'll also see open orders sent from TWS.

• Request All Open Orders method shows you open orders sent from ALL clients
connected to TWS, and all open orders that were sent from that TWS.

• Request Auto Open Orders method can only be used by the API with the client ID of "0."
Clicking this button sets the boolean parameter to "True" and forever binds TWS orders
to the API client. From that day forward, any time an open order exists on TWS it will
automatically be returned via the Ewrapper methods, and in this case be displayed in
the TWS Server Responses text panel of the sample application.

Got all that? Good, let's see the details.

What Happens When I Click the Req Open Orders Button?

When you click the Req Open Orders button, any open orders that currently exist are
displayed in the TWS Server Responses text panel of the main sample application window, as
shown below. You might recognize this screen; it’s the same one we used to describe open
order data returned from TWS as a result of an order.

If there are no open orders however, nothing will display in the panel.

Simple, right? So now let’s see what happens in the code.
Getting Started with the TWS C++ API 106

Orders and Executions
Chapter 16: Requesting Open Orders
OnReqOpenOrders()

When you click the Req Open Orders button, the OnReqOpenOrders() method defined in
client2Dlg.cpp calls the C++ method reqOpenOrders().

The reqOpenOrders() method, shown below, has no parameters.

C++ EWrapper Functions that Return Open Order Data

The reqOpenOrders() method triggers the EWrapper function openOrder(), which returns
information about open orders and displays it in the TWS Server Responses text panel. The
openOrder() method is shown below, followed by a list of its parameters.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

If you’ve read this book from the beginning, by now you should be familiar with the contract
and order EClientSocket properties, which contain properties that represent, respectively, a
contract and an order. The openOrder() function receives open order information via these
two structures, and also receives information from the OrderState object, which contains
properties representing the margin and commissions fields for both pre- and post-trade data.

There is one additional open order function used in the C++ API,openOrderEnd(). This
function, which has no parameters, serves as an end marker for a set of received open orders.
openOrderEnd() is called when all orders are sent to a client as a response to the
reqOpenOrders() method.

The code for openOrderEnd() displays the end marker for the open orders information
displayed in the TWS Server Responses text panel of the sample application main window.

void CClient2Dlg::OnReqOpenOrders()
{

// request open orders
m_pClient->reqOpenOrders();

}

m_pClient->reqOpenOrders();

void CClient2Dlg::openOrder(OrderId orderId, const Contract& contract,
const Order& order, const OrderState& orderState)

Parameter Description

orderID The order ID assigned by TWS. Use to cancel or update the
order.

contract This object includes attributes that describe the contract.

order This object includes attributes that describe the details of the
open order.

orderState This object includes attributes used for both pre and post trade
margin and commission data.
Getting Started with the TWS C++ API 107

Orders and Executions
Chapter 16: Requesting Open Orders
What Happens When I Click the Req All Open Orders Button?

When you click the Req All Open Orders button, open orders sent from ALL clients connected
to TWS, and all open orders that were sent from this client are displayed in the TWS Server
Responses text panel of the main sample application window, as shown below.

Let’s see what happens in the code.

OnReqAllOpenOrders()

When you click the Req All Open Orders button, the OnReqAllOpenOrders() method defined in
client2Dlg.cpp calls the C++ method reqAllOpenOrders().

The reqAllOpenOrders() method has no parameters but it does trigger the EWrapper function
openOrder(), which returns information about open orders and displays it in the TWS Server
Responses text panel, just as it does in response to the reqOpenOrders() method. See the
section on C++ EWrapper Functions that Return Order Data earlier in this chapter for details
about this function.

void CClient2Dlg::OnReqAllOpenOrders()
{

// request list of all open orders
m_pClient->reqAllOpenOrders();

}

Getting Started with the TWS C++ API 108

Orders and Executions
Chapter 16: Requesting Open Orders
What Happens When I Click the Req Auto Open Orders Button?

When you click the Req All Open Orders button, TWS orders are bound to the API client (the
client you are running!). From that day forward, any time an open order exists on TWS it will
automatically be returned via C++ EWrapper function openOrder() and displayed in the TWS
Server Responses text panel of the sample application.

Note that this function can only be used by the API with the client ID of “0.”

Let’s see what happens in the code.

OnReqAutoOpenOrders()

When you click the Req All Open Orders button, the OnReqAutoOpenOrders() method defined
in client2Dlg.cpp calls the C++ EClient Socket method reqAutoOpenOrders().

The reqAutoOpenOrders() Method

This method has a single parameter, bAutoBind. If this parameter is set to true (and notice
(true) in the call to the reqAutoOpenOrders() method above), newly created orders will be
implicitly associated with the client making the Auto Open Orders request. If the parameter is
set to false, no association is made.

In other words, if you are using an API with a Client ID of “0,” the autoBind parameter in
reqAutoOpenOrders is set to true and orders from ALL clients connected to TWS will be
reported to the sample application. If you’re not Client ID 0, you’ll receive an error message
and the auto-binding won’t be enabled.

The reqAutoOpenOrders() method triggers the openOrder() event, which returns information
about open orders and displays it in the TWS Server Responses text panel, just as it does in
response to the reqOpenOrders() method. See the section on C++ EWrapper Functions that
Return Order Data earlier in this chapter for details about this function.

void CClient2Dlg::OnReqAutoOpenOrders()
{

// request to automatically bind any newly entered TWS orders
 // to this API client. NOTE: TWS orders can only be bound to
 // client's with clientId=0.

m_pClient->reqAutoOpenOrders(true);
}

Getting Started with the TWS C++ API 109

Orders and Executions
Chapter 17: Requesting Executions
Chapter 17: Requesting Executions
This chapter shows you how to request execution reports using the C++ sample application,
and how our API handles such requests. You can retrieve all execution reports, or only those
you want by entering specific criteria such as time, symbol, exchange and more. We'll show
you how to use the sample application to get these execution reports, and we’ll see the
methods, events and parameters behind the process.

What Happens When I Click the Req Executions Button?

When you click the Req Executions button, the Execution Report Filter dialog appears. You
enter filter criteria for your execution reports by filling in the fields. You can filter your
execution reports by request ID, client ID, account code, time, symbol, security type,
exchange or action. If you leave all the fields blank except the Client ID field (which is filled in
with “0” by default), you will get reports of all of your executions.

The report is displayed in the TWS Server Responses text panel:

Now let’s take a look at the code.
Getting Started with the TWS C++ API 110

Orders and Executions
Chapter 17: Requesting Executions
OnReqExecutions()

When you click the Req Executions button, the OnReqExecutions() method defined in
client2Dlg.cpp runs. Here is what the code for this method looks like:

OnReqExecutions() does the following:

• Initializes and displays the Execution Report Filter dialog, RptFilterDlg.

• Calls the C++ method reqExecutions().

We mentioned before that the Client ID field comes with a default value of "0." This isn't by
chance! You can leave all of the other fields blank and everything will be fine. But if you leave
the Client ID field blank, you'll get nothing, no matter what other field values you may enter.
After you define the filter criteria and click OK, your values are passed to TWS via the
reqExecutions() method.

The reqExecutions() Method

The reqExecutions() method sends the values you entered in the Execution Report Filter dialog
to TWS. Another way of saying this is that the filter criteria you entered in the Execution Filter
dialog are the parameters for this method, which is shown below along with its parameters.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

void CClient2Dlg::OnReqExecutions()
{
 CRptFilterDlg dlg(m_execFilter.get());

 if (dlg.DoModal() != IDOK) return;

m_pClient->reqExecutions(dlg.reqId(), *m_execFilter);
}

m_pClient->reqExecutions(dlg.reqId(), *m_execFilter);

Parameter Description

reqId The ID of the data request. Ensures that responses are
matched to requests if several requests are in process.

filter This object contains attributes that describe the filter criteria
used to determine which execution reports are returned.
Getting Started with the TWS C++ API 111

Orders and Executions
Chapter 17: Requesting Executions
The filter parameter is another one of our EClientSocket properties, ExecutionFilter. It contains
attributes such time, symbol, security type, exchange, and other execution report filter
criteria. These attributes correspond to the fields in the Execution Report Filter dialog in our
sample application.

For a complete list of the properties in the ExecutionFilter COM object, see the API Reference
Guide.

That concludes our discussion of how orders and executions are handled by our C++ API. The
next section of the guide introduces you to some additional trading tasks supported by our API
and the sample application.
Getting Started with the TWS C++ API 112

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/executionfilter.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/executionfilter.htm

Orders and Executions
Chapter 17: Requesting Executions
C++ EWrapper Functions that Return Execution Details

Execution reports are returned via the execDetails() EWrapper function.

The code for this method is much longer than what’s shown above (the missing portion
contains code for displaying the execution details in the sample applictation). As you can see
from the event, execDetails() contains the following parameters:

Tables are for illustrative purposes only and are not intended to represent valid API information.

The detailed information about your executions are included as properties of the execution
object, which is one of our EClientSocket properties. The contract object contains information
about the contract that was traded; yes, this is the same EClientSocket property you’ve seen
before. For a complete list of the properties in the execution and contract objects, see the API
Reference Guide.

void CClient2Dlg::execDetails(int reqId, const Contract& contract, const
Execution& execution)
{

int i = m_orderStatus.AddString("---- Execution Details begin ----");

// create string
CString str;
str.Format("execDetails: reqId=%i", reqId);

// add to listbox
i = m_orderStatus.AddString(str);

.

.

.

Parameter Description

orderId The order Id that was specified previously in the call to
placeOrder().

contract This object includes attributes that describe the contract.

execution This object includes attributes that describe additional
execution details.

reqId The ID of the data request. Ensures that responses are
matched to requests if several requests are in process.
Getting Started with the TWS C++ API 113

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/socketclient_properties.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/c/socketclient_properties.htm

Orders and Executions
Chapter 17: Requesting Executions
execDetailEnd()

There is one additional Ewrapper function involved in getting execution reports from TWS: the
execDetailsEnd() event. This function, which has a single parameter (reqId), serves as an end
marker for a set of received execution reports. It is called when all executions have been sent
to a client as a response to the reqExecutions() method. Here is what the execDetailsEnd()
event looks like:

execDetailsEnd() also displays the end marker for the execution reports displayed in the TWS
Server Responses text panel of the sample application main window.

This concludes the section on orders and order information. The next section discusses the
remaining tasks that you can perform using the C++ sample application (or using your own
custom application!), including requesting the current server time and subscribing to news
bulletins.

void CClient2Dlg::execDetailsEnd(int reqId)
{

CString str;
str.Format("reqId=%i =============== end ===============", reqId);

int i = m_orderStatus.AddString(str);

// bring into view
int top = i - N < 0 ? 0 : i - N;
m_orderStatus.SetTopIndex(top);

}

Getting Started with the TWS C++ API 114

6
Additional Tasks

This section describes some additional tasks that you can perform using the C++ API sample
application. These operations don’t really belong anywhere else in this guide, so we’ve
grouped them together here. We'll show you the methods and parameters behind such tasks
as requesting the current server time, the next ID, subscribing and unsubscribing to news
bulletins, and changing the server logging level.

Here's what you'll find in this section:

• Chapter 18 - Requesting the Current Time

• Chapter 19 - Requesting the Next ID

• Chapter 20 - Subscribing to News Bulletins

• Chapter 21 - Viewing and Changing the Server Logging Level

In addition to the tasks described in this chapter, the ActiveX API
sample application also includes a few more advanced functions,
including the ability to calculate volatility and option price, and support
for IBAlgos. For more information on these and other advanced
capabilities of the ActiveX API, see our API Reference Guide, available

from the Reference Guide tab on our IB API web page.
Getting Started with the TWS C++ API 115

Additional Tasks
Chapter 18 - Requesting the Current Time
Chapter 18 - Requesting the Current Time
This chapter discusses the method for requesting the current server time. Actually,
"discusses" is really not the correct word. It merely "states" the method, which is quite solitary
with no parameters to call its own.

What Happens When I Click the Current Time Button?

You request the current server time by clicking the Current Time button The server time is
displayed in the TWS Server Responses text panel, as shown below.

This is a very simple process from a user’s point of view and the code that makes this happen
is also quite simple.

OnReqCurrentTime()

Just like the other buttons in the sample application, the Current Time button has an On
method associated with it. When you click the button, the OnReqCurrentTime() method
defined in client2Dlg.cpp runs. Here is what the code for this method looks like:

OnReqCurrentTime() calls the C++ EClient Socket method reqCurrentTime(), and that’s pretty
much all it does!

void CClient2Dlg::OnReqCurrentTime()
{

m_pClient->reqCurrentTime();
}

Getting Started with the TWS C++ API 116

Additional Tasks
Chapter 18 - Requesting the Current Time
The reqCurrentTime() Method

The reqCurrentTime() method is so simple that is doesn’t even have any parameters. All it
does is trigger the currentTime() event, which returns the current server time.

C++ EWrapper Functions that Return the Current Time

There is one EWrapper function that returns the current time, and that function is
currentTime(). This function has only one parameter, time, which as you might have guessed,
returns the current time on the server.

The currentTime() function is shown below.

m_pClient->reqCurrentTime();

void CClient2Dlg::currentTime(long time)
{
 CString displayString;

displayString.Format("current time = %d", time);
 int i = m_orderStatus.AddString(displayString);

// bring into view
int top = i - N < 0 ? 0 : i - N;
m_orderStatus.SetTopIndex(top);

}

Getting Started with the TWS C++ API 117

Additional Tasks
Chapter 19: Requesting the Next Order ID
Chapter 19: Requesting the Next Order ID
Each order you place in TWS (and in an API application) has a unique order ID assigned to it.
There is a rule about order IDs in TWS: Each successive order ID must be greater than the
most recently used order ID. As an example, consider the situation in which you place an
orders using order ID 1, then place an order using order ID 5. The next available order ID
would be 6; you can never go back and use 2, 3 or 4. Order ID 6 is greater than order ID 5,
the most recently used order ID.

You can use the TWS C++ API to request the next valid order ID that can be used when
placing an order. You might use this functionality if you are creating your own custom trading
application and with to ensure that each order uses a legal order ID.

What Happens When I Click the Req Next Id Button?

OnReqIds()

When you click the button, the OnReqIds() method defined in client2Dlg.cpp runs. Here is
what the code for this method looks like:

This method does one thing: it calls the EClient Socket method reqIds().

The reqIds() Method

The C++ method that you use to request the next valid ID is reqIDs(). After calling this
method, the nextValidId() EWrapper function is triggered, and the next valid ID is returned
from TWS. That ID will reflect any autobinding that has occurred (which generates new IDs
and increments the next valid ID therein).

The reqIDs() method is shown below.

reqIDs() has a single parameter, numIds. This parameter however is simply a placeholder and
has no real purpose. Simply set this parameter to any integer to make the method work the
way it’s supposed to. In the example shown above, this parameter is set to 20.

void CClient2Dlg::OnReqIds()
{

// request a block of 20 id's;
// next id is returned via nextValidId()
m_pClient->reqIds(20);

}

m_pClient->reqIds(20);
Getting Started with the TWS C++ API 118

Additional Tasks
Chapter 19: Requesting the Next Order ID
C++ EWrapper Functions that Return the Next Valid Id

As we mentioned above, the next valid order ID is returned from TWS via the nextValidId()
function. This function is also triggered when you successfully connect to TWS. The
nextValidId() event looks like this:

There is only one parameter returned with this event, orderId, which as you probably figured
out by now returns the next available order ID received from TWS. Increment all successive
orders by one based on this ID.

void CClient2Dlg::nextValidId(OrderId orderId)
{

m_dlgOrder->m_id = orderId;
}

Getting Started with the TWS C++ API 119

Additional Tasks
Chapter 20: Subscribing to News Bulletins
Chapter 20: Subscribing to News Bulletins
This chapter shows you how to subscribe to IB news bulletins through the C++ sample
application. Once you subscribe, all bulletins will display in the TWS Server Responses text
panel of the sample application. The news bulletins keep you informed of important exchange
disruptions.

We will show you the methods, events and parameters responsible for letting you subscribe
and unsubscribe to news bulletin feature in the C++ sample application.

What Happens When I Click the Req News Bulletins Button?

When you click the Req News Bulletins button, the IB News Bulletin Subscription dialog
appears. In the dialog, you can elect to receive new messages only, or receive all the current
day’s messages and any new messages. These two options are presented as radio buttons.
After you select your choice, click the Subscribe button to submit your subscription.

That’s how you subscribe to news bulletins using the C++ API sample application. Keep
reading to learn what happens in the code during this process.

OnNewsBulletins()

When you click the Req News Bulletins button, the OnNewsBulletins() method defined in
client2Dlg.cpp runs. Here is what the code looks like:

void CClient2Dlg::OnNewsBulletins()
{

CDlgNewsBulletins dlg;

if (dlg.DoModal() != IDOK) return;

 dlg.subscribe()
 ? m_pClient->reqNewsBulletins(dlg.allMsgs())
 : m_pClient->cancelNewsBulletins();
}

Getting Started with the TWS C++ API 120

Additional Tasks
Chapter 20: Subscribing to News Bulletins
OnNewsBulletins() does the following:

• Initializes and displays the IB News Bulletin Subscription dialog, dlgNewsBulletins.

• Calls the C++ method reqNewsBulletins() if the user clicks the Subscribe button in the
IB News Bulletin Subscription dialog.

• Calls the C++ method cancelNewsBulletins() if the user clicks the UnSubscribe button in
the IB News Bulletin Subscription dialog.

The reqNewsBulletins() method

This method tells TWS that you want to subscribe to news bulletins.

reqNewsBulletins() has one parameter: allMsgs. If you select the receive new messages only
radio button in the IB News Bulletin Subscription dialog, the allMsgs parameter, which asks
"receive ALL messages, old and new?" will be set to false, which basically means that you will
receive only new news bulletins. If you select receive all the current day's messages and any
new messages, the allMsgs parameter is set to true, which means, that you will receive all
news bulletins for the current day PLUS any new news bulletins. Either way, you are now
subscribed to news bulletins, and either way you will receive any NEW bulletins that get
posted fromthe time you subscribe.

News bulletins are returned to the C++ sample application via the updateNewsBulletin()
event.

m_pClient->reqNewsBulletins(dlg.allMsgs())
Getting Started with the TWS C++ API 121

Additional Tasks
Chapter 20: Subscribing to News Bulletins
C++ EWrapper Functions that Return News Bulletins

The bulletins are returned via the updateNewsBulletin() EWrapper function.

updateNewsBulletin() contains the following parameters:

Tables are for illustrative purposes only and are not intended to represent valid API information.

Canceling News Bulletins
If you're tired of knowing what's going on around you, you can elect to unsubscribe, or cancel
the news bulletins. To unsubscribe to news bulletin, you first need to click the Req News
Bulletins button in the C++ sample application. Then click Unsubscribe in the IB News Bulletin
Subscription dialog. When you do this, we call the cancelNewsBulletins() method, which as the
name implies, cancels your news bulletin subscription.

The cancelNewsBulletins() method header looks like this:

Because you are simply canceling a request, there are no values returned by this method.

void CClient2Dlg::updateNewsBulletin(int msgId, int msgType, const
CString& newsMessage, const CString& originExch)
{
 CString displayString;

displayString.Format(" MsgId=%d :: MsgType = %d :: Origin= %s ::
Message= %s",
 msgId, msgType, originExch, newsMessage);

 MessageBox(displayString, "IB News Bulletin", MB_ICONINFORMATION);
}

Parameter Description

msgId The bulletin ID, incrementing for each new bulletin.

msgType Specifies the type of bulletin. Valid values include:

• 1 = Reqular news bulletin

• 2 = Exchange no longer available for trading

• 3 = Exchange is available for trading

message The bulletin's message text.

origExchange The exchange from which this message originated.

m_pClient->cancelNewsBulletins();
Getting Started with the TWS C++ API 122

Additional Tasks
Chapter 21: Viewing and Changing the Server Logging Level
Chapter 21: Viewing and Changing the Server
Logging Level

This chapter shows you how to view and change the server logging level.

As client requests are processed (both system and API clients), TWS logs certain information
to its log.txt log file located in the installation directory. The purpose of this file is to help
resolve problems by providing some insight into the state of the program before the problem
occurred. In the C++ sample application, you can specify how detailed the information will be
when entered into the log.txt file. Basically, the higher the log level, the more performance
overhead that may be incurred. By default, the server logging level is set to "2" for error
logging.

See our API Reference Guide for more information about API
logging. The API Reference Guide is available from the Application
Programming Interfaces page on our web site as an online guide or
a downloadable/printable PDF.

What Happens When I Click the Log Configuration Button?

To see or change the server logging level, you first click the Log Configuration button on the
C++ sample application. In the Log Configuration dialog that appears, you select the logging
level from the drop-down. You can select System, Error, Warning, Information or Detail. After
you make your selection, click OK to close the dialog. Of course, you won’t really see any
changes in the sample application unless you encounter a problem of some kind.

That’s what happens on the user side of things. Let’s see what happens in the code.
Getting Started with the TWS C++ API 123

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide.htm

Additional Tasks
Chapter 21: Viewing and Changing the Server Logging Level
OnSetServerLogLevel()

As with all the other buttons on the sample applications, when you click the Log Configuration
button, an On method in client2Dlg.cpp runs. The On method for this button is called
OnSetServerLogLevel() and is shown below.

OnSetServerLogLevel() does the following:

• Initializes and displays the Log Configuration dialog (the dlgLogConfig object).

• Calls the C++ method setServerLogLevel() when the OK button is clicked.

The default level appears in the Log Level field of the Log Configuration dialog. We've
expanded the dropdown list in the following figure just to show you the available log levels.
Once you select a level and click OK, we call the setServerLogLevel() method.

The setServerLogLevel() Method

The setServerLogLevel() method contains a single parameter, logLevel. This parameter passes
the log level you selected in the Log Configuration dialog to TWS.

void CClient2Dlg::OnSetServerLogLevel()
{

if (s_dlgLogConfig.DoModal() != IDOK) return;

// set the TWS log level for API requests/responses
 m_pClient->setServerLogLevel(s_dlgLogConfig.serverLogLevel());
}

 m_pClient->setServerLogLevel(s_dlgLogConfig.serverLogLevel());
Getting Started with the TWS C++ API 124

Additional Tasks
Chapter 21: Viewing and Changing the Server Logging Level
The logLevel parameter specifies the level of log entry detail used by TWS when processing
API requests. The valid values for this parameter correspond to the choices in the Log Level
dropdown in the Log Configuration dialog:

• 1 = SYSTEM

• 2 = ERROR

• 3 = WARNING

• 4 = INFORMATION

• 5 = DETAIL

For more information about log levels and log entries, see the API
Logging topic in the API Reference Guide.

There are no parameters passed from TWS to the API in this process; therefore, there is no
corresponding C++ EWrapper function.

This concludes our discussion of the C++ sample application for individual accounts. The next
section discusses how the C++ API sample application takes care or Financial Advisors and
multi-client accounts.
Getting Started with the TWS C++ API 125

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/api_logging.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/api_logging.htm

Additional Tasks
Chapter 21: Viewing and Changing the Server Logging Level
Getting Started with the TWS C++ API 126

7
Where To Go From Here

If you've come this far and actually read the book, you now have a pretty decent grasp on
what the C++ API can do, and how to make it do some of the things you want. Now we give
you a bit more information about how to link to TWS with our C++ API, and we suggest some
helpful outside resources you can use to help you move forward.

This section contains the following chapters:

• Chapter 22 - Linking to TWS using the TWS C++ API

• Chapter 23 - Additional Resources
Getting Started with the TWS C++ API 127

Where To Go From Here
Chapter 22 - Linking to TWS using the TWS C++ API
Chapter 22 - Linking to TWS using the TWS
C++ API

If you have the skill and confidence to handle C++ on your own, you can build your own C++
API application to link to TWS using the following steps as a guide.

To link to TWS using the TwsSocketClient.dll

1 Create a Windows application using MS Visual Studio (version 5.0 or higher).

2 Add C:\jts\SocketClient\include to your project's include path. This should be done
for any individual project that accesses the TwsSocketClient library's header files.

3 Add the C:\jts\SocketClient\lib\TwsSocketclient.lib file to your project's
libraries path. This should be done for any individual project that accesses the
TwsSocketClient library.

4 Include EWrapper.h and EClientSocket.h in any Visual C++ source code that accesses
their functionality and data structures.

5 Subclass the EWrapper class.

6 Override the following functions:

Ewrapper Function Description

tickPrice() Handles market data.

tickSize()]

tickOptionComputation()

tickGeneric()

tickString()

tickEFP()

orderStatus() Receives order status.

openOrder() Receives open orders.

error() Receives error information.

connectionClosed() Notifies when TWS terminates the
connection.

updateAccountValue() Receives current account values.

updateAccountTime() Receives the last time account
information was updated.

updatePortfolio() Receives current portfolio information.

nextValidId() Receives the next valid order ID upon
connection.

contractDetails() Receives contract information.

contractDetailsEnd() Identifies the end of a given contract
details request.
Getting Started with the TWS C++ API 128

Where To Go From Here
Chapter 22 - Linking to TWS using the TWS C++ API
7 Instantiate the EClientSocket class.

8 Call the following functions:

a Import com.ib.client.* into your source code file.

b Implement the EWrapper interface. This class will receive messages from the
socket.

c Override the following functions:

bondContractDetails() Receives bond contract information.

exectDetails() Receives execution report information.

updateMktDepth() Receives market depth information.

updateMktDepthL2() Receives Level II market depth
information.

updateNewsBulletin() Receives IB news bulletins.

managedAccounts() Receives a list of Financial Advisor (FA)
managed accounts.

receiveFA() Receives FA configuration information.

historicalData() Receives historical data results.

scannerParameters() Receives an XML document that
describes the valid parameters of a
scanner subscription.

scannerData() Receives market scanner results.

realTimeBar() Receives real-time bars.

currentTime() Receives the current system time on the
server.

fundamentalData() Receives Reuters global fundamental
market data.

Ewrapper Functions Description

tickPrice() Handles market data.

tickSize()

tickOptionComputation()

tickGeneric()

tickString()

tickEFP()

orderStatus() Receives order status.

openOrder() Receives open orders.

error() Receives error information.

connectionClosed() Notifies when TWS terminates the
connection.

Ewrapper Function Description
Getting Started with the TWS C++ API 129

Where To Go From Here
Chapter 22 - Linking to TWS using the TWS C++ API
d Instantiate the EClientSocket class. This object will be used to send messages to
TWS.

e Call the following functions:

updateAccountValue() Receives current account values.

updateAccountTime() Receives the last time account information
was updated.

updatePortfolio() Receives current portfolio information.

nextValidId() Receives the next valid order ID upon
connection.

contractDetails() Receives contract information.

contractDetailsEnd() Identifies the end of a given contract
details request.

bondContractDetails() Receives bond contract information.

exectDetails() Receives execution report information.

updateMktDepth() Receives market depth information.

updateMktDepthL2() Receives Level II market depth
information.

updateNewsBulletin() Receives IB news bulletins.

managedAccounts() Receives a list of Financial Advisor (FA)
managed accounts.

receiveFA() Receives FA configuration information.

historicalData() Receives historical data results.

scannerParameters() Receives an XML document that describes
the valid parameters of a scanner
subscription.

scannerData() Receives market scanner results.

realTimeBar() Receives real-time bars.

currentTime() Receives the current system time on the
server.

fundamentalData() Receives Reuters global fundamental
market data.

EClientSocket Functions Description

eConnect() Connects to TWS.

eDisconnect() Disconnects from TWS.

reqMktData() Requests market data.

cancelMktData() Cancels market data.

reqMktDepth() Requests market depth.

cancelMktDepth() Cancels market depth.

Ewrapper Functions Description
Getting Started with the TWS C++ API 130

Where To Go From Here
Chapter 22 - Linking to TWS using the TWS C++ API
reqContractDetails() Requests contract details.

placeOrder() Places an order.

cancelOrder() Cancels an order.

reqAccountUpdates() Requests account values, portfolio, and
account update time information.

reqExecutions() Requests a list of the day’s execution
reports.

reqOpenOrders() Requests a list of current open orders
for the requesting client and associates
TWS open orders with the client. The
association only occurs if the
requesting client has a Client ID of 0.

reqAllOpenOrders() Requests a list of all open orders.

reqAutoOpenOrders() Automatically associates a new TWS
with the client. The association only
occurs if the requesting client has a
Client ID of 0.

reqNewsBulletin() Requests IB news bulletins.

cancelNewsBulletins() Cancels IB news bulletins.

setServerLogLevel() Sets the level of API request and
processing logging.

reqManagedAccts() Requests a list of Financial Advisor (FA)
managed account codes.

requestFA() Requests FA configuration information
from TWS.

replaceFA() Modifies FA configuration information
from the API.

reqScannerParameters() Requests an XML document that
describes the valid parameters of a
scanner subscription.

reqScannerSubscription() Requests market scanner results.

cancelScannerSubscription() Cancels a scanner subscription.

reqHistoricalData() Requests historical data.

cancelHistoricalData() Cancels historical data.

reqRealTimeBars() Requests real-time bars.

cancelRealTimeBars() Cancels real-time bars.

exerciseOptions() Exercises options.

reqCurrentTime() Requests the current server time.

serverVersion() Returns the version of the TWS
instance to which the API application is
connected.

EClientSocket Functions Description
Getting Started with the TWS C++ API 131

Where To Go From Here
Chapter 22 - Linking to TWS using the TWS C++ API
To run the program, ensure that the TwsSocketClient.dll is in the same directory as your
executable, or in your path. By default, the TwsSocketClient.dll file installs into your
C:\Windows\system or C:\WINNT\system32 directory.

TwsConnectionTime() Returns the time the API application
made a connection to TWS.

reqFundamentalData() Requests Reuters global fundamental
data. There must be a subscription to
Reuters Fundamental set up in Account
Management before you can receive
this data.

cancelFundamentalData() Cancels Reuters global fundamental
data.

EClientSocket Functions Description
Getting Started with the TWS C++ API 132

Where To Go From Here
Chapter 23 - Additional Resources
Chapter 23 - Additional Resources
There are many resources out there that will be adequate in getting you where you need to
go. If you have some books or places that you like, feel free to stick with them. The following
are the resources we find most helpful, and perhaps they'll be good to you, too!

Help with Microsoft Visual Studio and C++ Programming
While this book is intended for users with C++ programming experience, we understand that
even experienced programmers need help every once in a while.

The best place to go to find additional help with C++ programming in Microsoft Visual Studio is
in the Help menu in Visual Studio or on Microsoft’s web site at
http://msdn.microsoft.com/en-us/vstudio/default.aspx. This is the Visual Studio Developer
Center, and from here you can access complete information about Visual Studio. You can also
find information specific to Microsoft Visual C++ here.

There are literally hundreds of additional printed and web-based resources for C++
programmers. We encourage you to investigate these on your own.

Help with the TWS C++ API
For help specific to the TWS C++ API, the one best place to go, really the ONLY place to go, is
the Interactive Brokers website. Once you get there, you have lots of resources. Just type
www.interactivebrokers.com in your browser's address line. Now that you're there, let me tell
you where you can go.

As of this writing, the IB website looks as I'm describing. IB has a
tendency to revamp the look and organization of their site every
year or two, so have a little patience if it looks slightly different
from what's described here.

The API Reference Guide

The API Reference Guide includes sections for each API technology, including the DDE for
Excel. The upper level topics which are shown directly below the main book are applicable
across the board to all or multiple platforms.

To access the API Reference Guide from the IB web site, select API Solutions from the Trading
menu, then click the IB API button, then click the Reference Guide tab. Click the Online API
Reference Guide button to open the online guide, which contains a section devoted entirely to
the DDE for Excel API.

The API Beta and API Production Release Notes

The beta notes are in a single page file, and include descriptions of any new additions to the
API (all platforms) that haven't yet been pushed to production. The API Release Notes opens
an index page that includes links to all of the past years' release notes pages. The index
provides one-line titles of all the features included in each release.

To access these notes from the IB web site, select API Solutions from the Trading menu, then
click the IB API button, then click the Release Notes tab and select a link to the latest API
Getting Started with the TWS C++ API 133

http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://www.interactivebrokers.com
http://msdn.microsoft.com/en-us/visualc/default.aspx

Where To Go From Here
Chapter 23 - Additional Resources
production release notes. You can also access the release notes for the latest API Beta release
from this page.

The TWS API Webinars

IB hosts free online webinars through WebEx to help educate their customers and other
traders about the IB offerings. They present the API webinar about once per month, and have
it recorded on the website for anyone to listen to at any time.

• To register for the API webinar, from the IB web site click Education, then select
Webinars. Click the Live Webinars button, then click the API tab.

• To view the recorded version of the API webinar, from the Live Webinars page click the
Watch Previously Recorded Webinars button. Links to recorded versions of previously
recorded webinars are listed on the page.

API Customer Forums

You can trade ideas and send out pleas for help via the IB customer base accessible through
both the IB Bulletin Board and the Traders' Chat. The bulletin board includes a thread for the
API, and thus provides an ongoing transcript of questions and answers in which you might find
the answer to your question. The Traders' Chat is an instant-message type of medium and
doesn't retain any record of conversations.

• "To view or participate in the IB Bulletin Board, go to the Education menu and click
Bulletin Boards & Chats. Click the Bulletin Board tab, then click the Launch IB
Discussion Forum button to access all of our bulletin boards, including the TWS API
bulletin board.

• To participate in the Traders' Chat, you need to click the Chat icon from the menu bar
on TWS. Note that both of these customer forums are for IB customers only.

IB Customer Service

IB customers can also call or email customer service if you can't find the answer to your
question. However, IB makes it clear that the APIs are designed for use by programmers and
that their support in this area is limited. Still, the customer service crew is very knowledgeable
and will do their best to help resolve your issue. Simply send an email to:

api@interactivebrokers.com

IB Features Poll

The IB Features Poll lets IB customers submit suggestions for future product features, and
vote and comment on existing suggestions.

From the IB web site, click About IB, then select New Features Poll. Suggestions are listed by
category; click a plus sign next to a category to view all feature suggestions for that category.
To submit a suggestion, click the Submit Suggestion link.
Getting Started with the TWS C++ API 134

Index

Symbols
"On" methods 4-33

A
additional resources 7-133
additional trading tasks 6-115
Algo Order Parameters dialog 5-98
Algo order processing 5-99
Algo orders 5-97
allMsgs 6-121
API

reasons for using 2-18
API beta notes 7-133
API Reference Guide 7-133
API release notes 7-133
API software

downloading 3-23
installing 3-26

API support email 7-134
API technologies 2-20
API webinars 7-134

C
C++

running the sample application
from Visual Studio
2088 3-27

C++ API
additional resources 7-133
installing an IDE 3-22
linking to TWS using 7-128
preparing to use 3-21

C++ API sample application
connecting to 3-27

C++ API, help with 7-133
C++ programming help 7-133
C++ source code 4-33
Cancel Hist. Data button 4-61
Cancel Mkt Data button 4-45
Cancel Mkt Depth button 4-52
cancelHistoricalData() 4-61
canceling a market scanner
subscription 4-74
canceling historical data 4-54, 4-61
canceling market data 4-37, 4-45,
4-46
canceling market depth 4-47, 4-52,
4-53
canceling market scanner
subscriptiions 4-68
canceling news bulletins 6-122
canceling orders 5-82, 5-92, 5-93

canceling real time bars 4-62, 4-66
cancelMktData() 4-46
cancelMktDepth() 4-53
cancelNewsBulletins() 6-122
cancelOrder() 5-93
cancelRealTimeBars() 4-67
changing the server logging
level 6-123
Client ID 4-34
Client ID and multiple API
sessions 5-105
client2Dlg.cpp 4-33
Combination Order Legs
dialog 5-95
combo orders 5-94, 5-95

combo legs processing 5-96
Connect button 4-34
connecting the sample application
to TWS 4-32
connecting to the sample
application 3-27
connecting to TWS 4-32, 4-34
Connection Parameters dialog 4-34
contract data 4-75, 4-76, 4-77
contract details 4-75
contract details results 4-76
contract object 4-41, 4-50
contractDetailsEnd() 4-78
current time 6-116, 6-117
current time results 6-116
currentTime() 6-117
customer forums 7-134
customer service 7-134

D
Disconnect button 4-36
disconnecting from TWS 4-36
Dlg*.cpp 4-33
DlgOrder 4-39
document conventions 1-10
downloading API software 3-23

E
eConnect() 4-36
eDisconnect() 4-36
events

historical data 4-58
market data 4-42
market depth 4-50
real time bars 4-65

EWrapper functions
contract details 4-78

current time 6-117
execution details 5-113
market data 4-42
market depth 4-50
market scanners 4-72
news bulletins 6-122
open orders 5-107
real time bars 4-65

Ewrapper functions
historical data 4-58

execDetailEnd() 5-114
execDetails() 5-113
execDetails() parameters 5-113
Execution Report Filter dialog 5-110
executions 5-81, 5-110
Exercise Options button 5-101
Exercise Options dialog 5-100
exerciseOptions() 5-102
exerciseOptions()
parameters 5-102
exercising options 5-100
Extended button 5-104
extended order attributes 5-103,
5-104
Extended Order Attributes
dialog 5-103

F
Features Poll 7-134
filter parameter 5-112
footnotes and references 1-9

H
historical data 4-54, 4-55, 4-57
Historical Data button 4-55
historical data events 4-58
historicalData() parameters 4-59
how to use this book 1-8

I
IB bulletin boards 7-134
IB Customer Service 7-134
IBAlgo orders 5-97
icons used in this book 1-10
IDE, installing 3-22
installing API software 3-26
integrated development
environment 3-22
introduction 1-7
IP Address 4-34
Getting Started with the TWS C++ API 135

Index
L
linking to TWS 7-128
Log Configuration dialog 6-123, 6-124
log.txt file 6-123
logLevel parameter 6-125

M
market data 4-31, 4-37, 4-38, 4-40, 4-42, 4-43, 4-44

canceling 4-45
snapshot 4-45

market data events 4-42
market data results 4-38
market depth 4-47, 4-48, 4-49, 4-52
market depth events 4-50
Market Depth for dialog 4-48
market scan results 4-69
market scanner

subscribing to 4-71
Market Scanner button 4-69
Market Scanner dialog 4-68

code in 4-70
market scanners 4-68, 4-69, 4-70, 4-71, 4-72, 4-73
methods that call EClient Socket methods 4-33
Microsoft Visual Studio

additional resources for 7-133
modifying orders 5-93
multiple API sessions 5-105

N
News Bulletin Subscrsciption dialog 6-120
news bulletins 6-120, 6-121

O
open orders 5-105, 5-106, 5-107, 5-108, 5-109

different types 5-106
open orders results 5-106
openOrder() 5-107, 5-108
openOrder() parameters 5-107
openOrderEnd() 5-107
options 5-100, 5-101, 5-102

exercising 5-101
order IDs 6-118
orders 5-81, 5-82, 5-83, 5-92, 5-93

Algo 5-97
combo orders 5-94
modifying 5-93
what-if 5-93

organization of this book 1-8

P
Place Order button 5-83
Place Order dialog 5-82

Algo Params button 5-97
Combo Legs button 5-94

placing Algo orders 5-97
placing combination orders 5-94
placing orders 5-82
Port 4-34

preparing to use the C++ API 3-21

R
real time bars 4-62, 4-63, 4-64
real time bars events 4-65
real-time account monitoring, in TWS 2-17
realTimeBar() parameters 4-65
reasons for using an API 2-18
Req All Open Orders button 5-108
Req Auto Open Orders button 5-109
Req Contract Data button 4-76
Req Current Time button 6-116
Req Executions button 5-110
Req Mkt Data button 4-38
Req Mkt Depth button 4-48
Req News Bulletins button 6-120
Req Next Id button 6-118
Req Open Orders button 5-106
Req Real Time Bars button 4-63
reqAllOpenOrders() 5-108
reqAutoOpenOrders() 5-109
reqContractDetails() 4-77
reqContractDetails() parameters 4-77
reqCurrentTime() 6-117
reqExecutions() 5-111
reqExecutions() parameters 5-111
reqFundamentalData() 4-56
reqHistoricalData() 4-57
reqHistoricalData() parameters 4-58
reqMktData() 4-40
reqMktData() parameters 4-40
reqMktDepth() 4-49
reqMktDepth() parameters 4-49
reqNewsBulletins() 6-121
reqOpenOrders() 5-107
reqRealTimeBars() 4-64
reqRealTimeBars() parameters 4-65
reqScannerParameters() 4-70
reqScannerSubscription() 4-71
reqScannerSubscription() parameters 4-71
Request All Open Orders 5-106
Request Auto Open Orders 5-106
Request Contract Details dialog 4-75
Request Historical Data dialog 4-54
Request Market Data dialog 4-37

market data fields 4-41
Request Market Depth dialog 4-47
Request Open Orders 5-106
Request Real Time Bars dialog 4-62
requesting contract data 4-75
requesting current time 6-116
requesting executions 5-110, 5-111, 5-114
requesting historical data 4-54
requesting market data 4-37, 4-38
requesting market depth 4-47
requesting open orders 5-105
requesting real time bars 4-62
requesting scanner parameters 4-69, 4-70
resources 7-127
Getting Started with the TWS C++ API 136

Index
resources, for C++ programming help 7-133

S
sample application

connecting to 3-27
running 3-27

scanner parameters
requesting 4-70

scannerData() 4-72
scannerData() parameters 4-72
scannerDataEnd() 4-73
scannerParameters() 4-70
server log levels 6-125
Server Logging button 6-123
server logging level 6-123, 6-124, 6-125
server time 6-116
setServerLogLevel() 6-124
snapshot 4-45
subscribing to market scanner subscriptions 4-68
subscribing to news bulletins 6-120
subscription object 4-71

T
tickEFP() 4-44
tickGeneric() 4-43
tickOptionComputation() 4-44
tickPrice() 4-42
tickSize() 4-43
tickString() 4-43
Trader Workstation

overview 2-14
trading window 2-17
TWS

available API technologies 2-20
real-time account monitoring in 2-17

TWS and the API 2-19
TWS Order Ticket 2-17
TWS overview 2-14, 2-16, 2-17
TWS Quote Monitor 2-17
TwsSocketClient.dll

linking to 7-128

U
updateMktDepth() 4-51
updateMktDepth() parameters 4-51
updateMktDepthL2() 4-52
updateNewsBulletin() 6-122
updateNewsBulletin() parameters 6-122
using this book 1-8

document conventions 1-10
icons 1-10
organization 1-8

V
viewing the server logging level 6-123

W
What If button 5-93
what-if data 5-93
whatIf parameter 5-93
where to go from here 7-127

X
xml parameter, in scannerParameters() 4-71
Getting Started with the TWS C++ API 137

Index
Getting Started with the TWS C++ API 138

	Introduction
	How to Use this Book
	Organization
	Part 1: Introducing the TWS C++ API
	Part 2: Preparing to Use the TWS C++ API
	Part 3: Market Data
	Part 4: Orders and Executions
	Part 5: Additional Tasks
	Part 6: Where to Go from Here

	Footnotes and References
	Icons
	Document Conventions

	TWS and the C++ API
	Chapter 1 - What is Trader Workstation?
	What Can You Do with TWS?
	A Quick Look at TWS
	The TWS Quote Monitor
	The Order Ticket
	Real-Time Account Monitoring

	Chapter 2 - Why Use the TWS C++ API?
	TWS and the API
	Available API Technologies
	An Example

	Preparing to Use the C++ API
	Chapter 3 - Install an IDE
	Chapter 4 - Download the API Software
	Chapter 5 - Connect to the C++ Sample Application
	Running the C++ API Sample Application
	Running the C++ API Sample Application from Visual Studio 2008
	In case of errors:

	What’s Next

	Market Data
	Chapter 6 - Connecting to TWS
	C++ Sample Application
	Source Code
	A Look at client2Dlg.cpp

	What Happens When I Click the Connect Button?
	OnConnect()

	Disconnecting from a Running Instance of TWS

	Chapter 7: Requesting and Canceling Market Data
	What Happens When I Click the Req Mkt Data Button?
	OnReqMktData()
	About the Request Market Data Dialog
	reqMktData()
	C++ EWrapper Functions that Return Market Data

	Getting a Snapshot of Market Data
	Canceling Market Data
	cancelMktData()

	Chapter 8 - Requesting and Canceling Market Depth
	What Happens When I Click the Req Mkt Depth Button?
	OnReqMktDepth()
	The reqMktDepth() Method
	C++ EWrapper Functions that Return Market Depth

	Canceling Market Depth
	The cancelMktDepth() Method

	Chapter 9 - Requesting and Canceling Historical Data
	What Happens When I Click the Historical Data Button?
	OnReqHistoricalData()
	The reqHistoricalData() Method
	C++ EWrapper Functions that Return Historical Data

	Historical Data Limitations
	Canceling Historical Data
	The cancelHistoricalData() Method

	Chapter 10 - Requesting and Canceling Real Time Bars
	What Happens When I Click the Real Time Bars Button?
	OnReqRealTimeBars()
	The reqRealTimeBars() Method
	C++ EWrapper Functions that Return Real Time Bars

	Canceling Real Time Bars
	The cancelRealTimeBars() Method

	Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
	What Happens When I Click the Market Scanner Button?
	OnMarketScanner()
	Requesting Scanner Parameters
	Subscribing to a Market Scanner
	C++ EWrapper Functions that Return Market Scanner Results
	The scannerDataEnd() Function

	Cancel a Market Scanner Subscription

	Chapter 12: Requesting Contract Data
	What Happens When I Click the Req Contract Data Button?
	OnReqContractDetails()
	The reqContractDetails() Method
	C++ EWrapper Functions that Return Contract Details
	The contractDetailsEnd() Function

	Orders and Executions
	Chapter 13: Placing and Canceling an Order
	What Happens When I Place an Order?
	OnPlaceOrder()
	The placeOrder() Method

	C++ EWrapper Functions that Return Order Data
	Open Order Information and Contract Details
	Extended Attributes
	Execution Details
	Order State Information
	The status Parameter

	Canceling an Order
	The cancelOrder() Method

	Modifying an Order
	Requesting "What-If" Data before You Place an Order
	Placing Combo Orders
	Combo Legs Processing

	Placing Algo Orders
	Algo Order Processing

	Chapter 14: Exercising Options
	What Happens When I Click the Exercise Options Button?
	OnExerciseOptions()
	The exerciseOptions() Method

	Chapter 15: Extended Order Attributes
	What Happens When I Click the Extended Button?

	Chapter 16: Requesting Open Orders
	Running Multiple API Sessions
	The Difference between the Three Request Open Orders Buttons
	What Happens When I Click the Req Open Orders Button?
	OnReqOpenOrders()
	C++ EWrapper Functions that Return Open Order Data

	What Happens When I Click the Req All Open Orders Button?
	OnReqAllOpenOrders()

	What Happens When I Click the Req Auto Open Orders Button?
	OnReqAutoOpenOrders()
	The reqAutoOpenOrders() Method

	Chapter 17: Requesting Executions
	What Happens When I Click the Req Executions Button?
	OnReqExecutions()
	The reqExecutions() Method
	C++ EWrapper Functions that Return Execution Details
	execDetailEnd()

	Additional Tasks
	Chapter 18 - Requesting the Current Time
	What Happens When I Click the Current Time Button?
	OnReqCurrentTime()
	The reqCurrentTime() Method
	C++ EWrapper Functions that Return the Current Time

	Chapter 19: Requesting the Next Order ID
	What Happens When I Click the Req Next Id Button?
	OnReqIds()
	The reqIds() Method
	C++ EWrapper Functions that Return the Next Valid Id

	Chapter 20: Subscribing to News Bulletins
	What Happens When I Click the Req News Bulletins Button?
	OnNewsBulletins()
	The reqNewsBulletins() method
	C++ EWrapper Functions that Return News Bulletins

	Canceling News Bulletins

	Chapter 21: Viewing and Changing the Server Logging Level
	What Happens When I Click the Log Configuration Button?
	OnSetServerLogLevel()
	The setServerLogLevel() Method

	Where To Go From Here
	Chapter 22 - Linking to TWS using the TWS C++ API
	Chapter 23 - Additional Resources
	Help with Microsoft Visual Studio and C++ Programming
	Help with the TWS C++ API
	The API Reference Guide
	The API Beta and API Production Release Notes
	The TWS API Webinars
	API Customer Forums
	IB Customer Service
	IB Features Poll

