GEttlng SJ[artEd 'ownload the software to your PC and
. e i 1] t
with the TWS ety

“~memany and may run faster, but

ACT'VEX API GL“de f new features. To download to

[P lect Trader Woestation

B xR K %
: . izermame and
MH-P&. Top & Gy | Caweiers 1, Coede

S x|t el

[Wy Fan Lt Fran R
e b gy

ndediprg Exchunge Desinpmos
Emachy

LY St
A0 EsdnRT
SHART

SMART

Taaapf

EaiaRt

SMART
SRART

Saapt
EnsaRT
TRART
SMART <

onman®

& Interactive Brokers

The Professianal's Sateway to the Wordd's Markets
.

Getting Started with the TWS ActiveX API
September 2014
Supports TWS API Release 9.71

© 2014 Interactive Brokers LLC. All rights reserved.

Sun, Sun Microsystems, the Sun Logo and Java are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. Excel,
Windows and Visual Basic (VB) are trademarks or registered trademarks of the
Microsoft Corporation in the United States and/or in other countries. TWS Javahelp
version 013, March 25, 2008.

Any symbols displayed within these pages are for illustrative purposes only, and are not
intended to portray any recommendation.

Contents

1 Introduction ...ciiccciiiciiiicsirscsmrsssmmassmrassmsansssansssansssansssannssnnnssnnnnnnns 7
HOW t0 USE this BOOK ...uviiiiiiiiiiiii i s 8
(O] o=] oY= 1 [0 o [8
Part 1: Introducing the TWS ActiveX API ... e 8

Part 2: Preparing to Use the TWS ActiveX APT ...t 9

Part 3: Market Data......ooviiiiiiii 9

Part 4: Orders and EXECULIONScoviiiiiiiiiii e 9

Part 5: Additional Tasksc.ocviriiiiiiiii 9

Part 6: Where to Go from Here......ccooiiiiiiii 9
Footnotes and ReferenCesvoviiiiiiii 9
LCONS et e 10
DocumMeENt CoNVENTIONS ... uiiiti i e 11

2 TWS and the ActiveX API.......c..ccveeiivierenssassnssnssnssansnssnnsnssnnnnnsnnes 13

Chapter 1 - What is Trader Workstation?........ccouiieiiiiiiii e 14
What Can You Do With TW S .t eeeaeas 16

A QUICK LOOK @t T W S ittt et e eane s 16
The TWS QUOTE MONIEOr vttt e e ae e 16

The Order TICKEE ... e e e e 16
Real-Time Account MONITOrNG ...oueiue i e eees 17

Chapter 2 - Why Use the TWS ActiveX API? 18
TWS and the AP ..ot 18
Available API TeChNOIOGIES ... v e e eees 19

FAN g I = | Yo =P 19

3 Preparing to Use the ActiveX APIcccovemmmvnmmmnnnmnsnnsssnnsnnnnnnnes 21

Chapter 3 - Install @n IDE ..ot i i i et e et ae e aaes 22
Programming Languages, ActiveX and Microsoft Visual Studio 2008................... 22
Chapter 4 - Download the API SOftWarecciiiiii i e 24
Chapter 5 - Connect to the ActiveX Sample Application........cccovviiiiiiiiiiii i 28
Multiple Versions of the Sample Applicationccvviiiiiiiii e 28

Getting Started with the TWS ActiveX API i

Contents

Connecting to the VB.NET Sample Application from Visual Studio 2008 29

W hat's N Xt e e e aaeas 31

4 Market Data.....ccccriirinmmimsa s rse s r s ranranranaannnas 33
Chapter 6 - Connecting t0 TW S ...ttt e i e it enes 34
ActiveX Sample Application Basic Framework.......ccoviiiiiiiii i ecieniaeea 34
AIGMa NN, e e e 35

What Happens When I Click the Connect Button?cccoiiiiiiiiiiiiiiiicieieene 35
Connect Button Event Handlerooviviiiiiiiiii e 37
Disconnecting from a Running Instance of TWS ... oo 38
Chapter 7: Requesting and Canceling Market Datac..cooiiiiiiiii i 39
What Happens When I Click the Req Mkt Data Button?........cooiviiiiiiiiiiiiicniinenns 40
Req Mkt Data Button Event Handler.......ccooiiiiiiiiiiiii e 40

States of the dIgOrder Object......oooviiiiii 41

The regMktDataEx() Methodccoviiiiiii e 42

ActiveX Events that Return Market Datac.covvviiiiiiiiii 44

Getting a Snapshot of Market Data.......ccooiiiiiiiii 45
Canceling Market Data....ciiii i i i e e e 45
The cancelMktData() Method........c.oiiiiiiiii e 46

Chapter 8 - Requesting and Canceling Market Depthccoviiiiiiiiiiin i 47
What Happens When I Click the Req Mkt Depth Button?......c..coviiiiiiiiiiiininnn 48
Req Mkt Depth Button Event Handler ..o e 48

The regMktDepthEX() Method......ccoiiiiiiiii e 49

ActiveX Events that Return Market Depthccooiiiiiiiiii e 50
Canceling Market Depth ..o e 52
The cancelMktDepth() Method......c.cviiiiiiii i e 52
Chapter 9 - Requesting and Canceling Historical Data..........ccccviiiiiiiiiiiic i 53
What Happens When I Click the Historical Data Button? ..., 54
Historical Data Button Event Handler ..o 54

The reqHistoricalDataEx() Method........ccviiiiiiiiiiii e 55

ActiveX Events that Return Historical Data..........ccooviiiiiiiiiiiin 56
Canceling Historical Dataoiiiiiii i i e e e 57
The cancelHistoricalData() Method.......ccooviiiiiiii e 58
Chapter 10 - Requesting and Canceling Real Time Bars......c.coevviiiiiiiiiii i i e 59
What Happens When I Click the Real Time Bars Button?cccoiiiiiiiiiiiniinnns 60
Real Time Bars Button Event Handler...........coooviiiiiin 60

Getting Started with the TWS ActiveX API ii

The reqRealTimeBarsEx() Methodccoviiiiiiiiiiii e 61

ActiveX Events that Return Real Time Barsccvieviiiiiiiiiiiinieieeeeeee 62
Canceling Real TimeE BarS . couiiiii ittt e e ettt a e aa e it e riaeaaas 63
The cancelRealTimeBars() Methodc.oviiiiiiiiiiiii e 63

Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions................ 64
What Happens When I Click the Market Scanner Button?..........cccooviiiiiiiiienns 65
Market Scanner Button Event Handler ..o 66
Requesting Scanner Parameters oo it e 67
Subscribing to a Market Scanner ... 67

The scannerDataEnd() Event. ... e 68

Cancel a Market Scanner SUbSCHPLIONcuiiiiiiii i i i i 69
Chapter 12: Requesting Contract Data.......ccoviiiiiiiiiiii i i i e 70
What Happens When I Click the Req Contract Data Button?cccoviiiiinnnnns 71
Req Contract Data Button Event Handler ..o 71

The reqContractDetailsEX() Method......coiiiiiiiiiiii e 72

The contractDetailSEX() EVEN ...ciiiiiiiiii e 72

The contractDetailsSENd() EVENE .o e 73

5 Orders and EXeCUtiONS.....c.ccuvimmmamrinmmsemmsnsssnssanssanssnsssnssansnnnssnnnns 75
Chapter 13: Placing and Canceling an Order......coviiiiiiiiii i i i i 76
What Happens When I Place an Order? ...t i i i et e e vnne e 77
Place Order Button Event Handler........oooiiiiiiiiiiii e 77

The placeOrderEx() Method ..o e 78

The orderStatus() EVeNt. .o e 79

o= ol [aTo =T T @ g L= o PP 80
The cancelOrder() Methodc.oiiiiiiii e 80
oo 11 aVAT o e I= 1 @] e [=] o PP 81
Requesting "What-If" Data before You Place an Order.......cccooeviiiiiiiiiiiiniiinn e, 81
Placing Combo Orders ..ot e e a e 82
COMDO LGS PrOCESSING 1.viiiiiiiiii it it i i e e et et anes 84

Combo Legs Code EXample ..o i e e 85

(= Toi T aTe AN [a [o T O] /o L= 3 PP 87

P\ [e Lo @] e [=T ol o /o Tol= 111 s [U PPN 89

Chapter 14: EXercising OptiONS. . .cuuiiiiiiiiit i i i i e e e re e ae e eaneeaanes 90
What Happens When I Click the Exercise Options Button?cooviiiiiiiiinnnnns 91
Exercise Options Button Event Handler........ccoooiiiiiiii e 91

Getting Started with the TWS ActiveX API iii

Contents

Contents

The exerciseOptionsEx() Methodccviiiiiiii 92

Chapter 15: Extended Order Attributesocoiiiiiii i e 93
What Happens When I Click the Extended Button?cccoiiiiiiiiiiiii i 94
Chapter 16: Requesting Open OrderS ..ivviiiiiii i i i e e it e aee e 95
RUNNING MUILIPIE APT SESSIONS «..utiiiit it e et r e e aaaes 95
The Difference between the Three Request Open Orders Buttons............ccoceeeie. 96
What Happens When I Click the Req Open Orders Button?........cccooviiiiiiiiiinnnns 96
Req Open Orders Button Event Handlercoooiiiiiiiiiiiiiicciciccie e 97

The openOrderEX() EVENE ..o e 97

The openOrderEnd() EVent o e e 98

What Happens When I Click the Req All Open Orders Button?cccoovvivvinennens 98
Req All Open Orders Button Event Handler.........covviiiiiiiiiii i 98

What Happens When I Click the Req Auto Open Orders Button?cocoviinei 99
Req Auto Open Orders Button Event Handler........cooiiiiiiiiiiiiiiiic i, 99

The reqAutoOpenOrders() Methodcccvviiiiiiiiii e 99
Chapter 17: Requesting EXeCULIONSiiiiiiiii i e 100
What Happens When I Click the Req Executions Button?coccieiiiiiiinnnen. 100
Req Executions Button Event Handler.........cooiiiiiii i 101

The regExecutionsEX() Methodccviiiiiiiiiiiii e 101

The execDetails() Methodcccviiiiiiii s 102

The execDetaillENd() EVENt. ..ot e e 102

6 Additional TasKS ...cuvariemriemmimrmnmrsammsessnssanssanssanssnssanssnnssnnsnnnnnns 103
Chapter 18 - Requesting the Current Timeo e 104
What Happens When I Click the Current Time Button?cciiiiiiiiiiiiiiennen, 104
Current Time Button Event Handler..........coooviiiiiii 104

The reqCurrentTime() Methodcvviiiiiiii i e 105

The currentTime() Event Handler......coooiiiiiiiii i 105

Chapter 19: Requesting the Next Order IDcovviiiiiiiii i e 106
The reqlds() Methodc.oiiiiiiii i e e 106

The nextValidId() EVENT .. e 106
Chapter 20: Subscribing to News Bulletinsccoviiiiiiiiiiiii e 107
What Happens When I Click the Req News Bulletins Button?............ccoviiveinnen. 107
Req News Bulletins Button Event Handler ... 108

The reqNewsBulletins() method......c..cooiiiiiiii i e 108

The updateNewsBulletin() Methodcoviiiiiiii e 109

Getting Started with the TWS ActiveX API iv

Canceling News BUlletinsciiiiiiii i i e 109
Chapter 21: Viewing and Changing the Server Logging Level........ccccooviiiiiiiniinnnn. 110
What Happens When I Click the Log Configuration Button?............ccooiiiennnen. 110
Log Configuration Button Event Handler ... 111

The setServerLoglevel() Methodccviiiiiiiiiiii e 111

7 Where to GO from Here.......ccvovimmiemnmsnnmssmss s ssnnsssssnsssnsnnnss 113
Chapter 22 - Linking to TWS using the TWS ActiveX APIooiiiiiiiiiiiiiiiciieeen 114
Registering Third-Party ActiveX Controlscccviiiiiiiiiiiic e 115
Chapter 23 - Additional RESOUICESviiiiiiiiii i e aneaas 116
Help with Visual Basic and VB.NET Programming.......cccooiiiiiiiiiiiiiieiiineinnenans 116
Help with the TWS ACtIVEX APT ...t e e eens 116
The API Reference GUIAEccvviiiiiiiiiiiiiii s 116

The API Beta and API Production Release Notes..........coovvviiiiiiiiiiiinninnnn 116

The TWS API WeEbDINarsS.....oiviiiiiiiii e 117

APT CuStOmMeEr FOrUMS .. uuiiiiii i e 117

IB CUSTOMEE SEIVICE .ttt 117

IB Features POll.. ..o 117

Appendix A: Appendix A - Extended Order Attributes................ 119

Appendix B: Appendix B - Account Page Values.......cccvvcmrmnnnnnnns 123

Getting Started with the TWS ActiveX API v

Contents

Contents

Getting Started with the TWS ActiveX API

Vi

Introduction

You might be looking at this book for any number of reasons, including:

e You love IB's TWS, and are interested in seeing how using its API can enhance your
trading.

e You use another online trading application that doesn't provide the functionality of TWS,
and you want to find out more about TWS and its API capabilities.

e You never suspected that there was a link between the worlds of trading/financial
management and computer programming, and the hint of that possibility has piqued
your interest.

Or more likely you have a reason of your own. Regardless of your original motivation, you now
hold in your hands a unique and potentially priceless tome of information. Well, maybe that's
a tiny bit of an exaggeration. However, the information in this book, which will teach you how
to access and manage the robust functionality of IB's Trader Workstation through our TWS
ActiveX for Visual Basic API, could open up a whole new world of possibilities and completely
change the way you manage your trading environment. Keep reading to find out how easy it
can be to build your own customized trading application.

If you are a Financial Advisor who trades for and allocates shares
among multiple client accounts and would like more information
about using the ActiveX API, see the Getting Started with the TWS
ActiveX API for Advisors Guide.

Note: This guide supports API releases no higher than 9.71.

Getting Started with the TWS ActiveX API 7

Introduction
How to Use this Book

How to Use this Book

Before you get started, you should read this section to learn how this book is organized, and
see which graphical conventions are used throughout.

Our main goal is to give active traders and investors the tools they need to successfully
implement a custom trading application (i.e. a trading system that you can customize to meet
your specific needs), and that doesn't have to be monitored every second of the day. If you're
not a trader or investor you probably won't have much use for this book, but please, feel free
to read on anyway!

We should also tell you that throughout this book we use the TWS ActiveX API sample
application to demonstrate how we implemented the API. However, our sample application is
not our primary focus. Our main objective is to introduce you to the methods, events and
parameters in the ActiveX API that you will need to learn to build your own custom trading
application. You can use the sample application as a starting point.

- Throughout this book, we use the acronym “"TWS” in place of “Trader
} Workstation.” So when you see "TWS” anywhere, you’ll know we're
talking about Trader Workstation.

Before you read any further, we need to tell you that this book

focuses on the TWS side of the ActiveX API - we don't really help you

to learn Visual Basic. If you aren't a fairly proficient Visual Basic

programmer, or at least a very confident and bold beginner, this may
be more than you want to take on. We suggest you start with a beginner's
Visual Basic programming book, and come back to us when you're comfortable
with the language.

Organization

We've divided this book into five major sections, each of which comprises a number of smaller
subsections, and each of those have even smaller groupings of paragraphs and figures...well,
you get the picture. Here’s how we've broken things down:

Part 1: Introducing the TWS ActiveX API

The chapters in this section help you answer those important questions you need to ask before
you can proceed - questions such as "What can TWS do for me?" and "Why would I use an
API?" and "If I WERE to use an API, what does the ActiveX API have to offer me?" and even
"What other API choices do I have?"

If you already know you want to learn about the TWS API, just skip on ahead.

Getting Started with the TWS ActiveX API 8

Introduction
How to Use this Book

Part 2: Preparing to Use the TWS ActiveX API

Part 2 walks you through the different things you'll need to do before your API application can
effectively communicate with TWS. We'll help you download and install the API software,
configure TWS, and get the sample application up and running. A lot of this information is very
important when you first get started, but once it's done, well, it's done, and you most likely
won't need much from this section once you've completed it.

Part 3: Market Data

Part 3 gets you working with the ActiveX sample application to get market data. You'll learn
how to request, receive and cancel market data, market depth, historical data, real time bars,
run market scanners and get contract data. We'll tell you exactly what methods you need to
use to send info to TWS, and just what TWS will send you back. We've already documented
the method parameters, descriptions and valid values in the API Reference Guide, but we have
provided a lot of those details here for your convenience.

Part 4: Orders and Executions

Part 4 takes your through the order-related tasks in the ActiveX API sample application. You'll
learn how the API handles the process of placing and canceling an order, viewing open orders,
and viewing executions. Here too we provide the methods, events and parameters used for
these trading tasks.

Part 5: Additional Tasks

Part 5 continues your path through the ActiveX API sample application by describing the
methods, events and parameters used for the rest of the buttons in the sample application,
including how to get the current system time and how to request and cancel news
subscriptions.

Part 6: Where to Go from Here

After filling your head with boatfuls of API knowledge, we wouldn't dream of sending you off
empty-handed! Part 7 includes some additional information about linking to TWS using our
ActiveX for Visual Basic API, then tells you how to keep abreast of new API releases (which of
course means new features you can incorporate into your trading plan), how to navigate the
Interactive Brokers website to find support and information, and what resources we
recommend to help you answer questions outside the realm of IB support, questions such as
"Why isn't my Visual Studio working?"

Footnotes and References

1Any symbols displayed are for illustrative purposes only and are not intended to portray a
recommendation.

Getting Started with the TWS ActiveX API 9

Introduction
How to Use this Book

Icons

When you see this guy, you know that there is
something that relates specifically to TWS: a new
feature to watch for, or maybe something you're
familiar with in TWS and are looking for in the API.

4%

TWS-Related
‘. These Visual Basic tips are things we noted and think
. you might find useful. They don't necessarily relate
h only to TWS. We don't include too many of these, but

when you see it you should check it out - it will
ActiveX Tip probably save you some time.

' This shows you where there is a particularly useful or
/ e important point being made.

Important!

\) You may want to take a peek, but it isn't the end of the
.% world if you don't.

Take a Peek!

[This icon denotes references outside of this book that
we think may help you with the current topic, including
links to the internet or IB site, or a book title.

Go Outside!

Getting Started with the TWS ActiveX API 10

Introduction
How to Use this Book

Document Conventions

Here’s a list of document conventions used in the text throughout this book.

Convention Description Examples
Bold Indicates: When you click the Req
Mkt Data button...
e menus
* screens Press Ctrl+C to copy...
e windows
e dialogs
e buttons
e tabs

e Kkeys you press

e names of classes
and methods

Italics Indicates: To access the users’ guide,
. under the Software
¢ commandsin a menu, select Trader
menu Workstation, then click

« objects on the Users’ Guide.
screen, such as
text fields, check
boxes, and
drop-down lists

Code samples Code samples appear
gray boxes throughout
the book.

Getting Started with the TWS ActiveX API 11

Introduction
How to Use this Book

Getting Started with the TWS ActiveX API

12

TWS and the ActiveX API

The best place to start is by getting an idea of what Trader Workstation (TWS), is all about. In
this section, first we'll describe TWS and some of its major features. Then we'll explain how
the API can be used to enhance and customize your trading environment. Finally, we'll give
you a summary of some of the things the ActiveX API can do for you!

Here's what you'll find in this section:

e Chapter 1 - What is Trader Workstation?
e Chapter 2 - Why Use the ActiveX API?

Getting Started with the TWS ActiveX API 13

TWS and the ActiveX API
Chapter 1 - What is Trader Workstation?

Chapter 1 - What is Trader Workstation?

Interactive Brokers' Trader Workstation, or TWS, is an online trading platform that lets you
trade and manage orders for all types of financial products (including stocks, bonds, options,
futures and Forex) on markets all over the world - all from your choice of two workspaces:

e The Advanced Order Management workspace, which is a single spreadsheet-like screen.

T Aropumd Lt o
Tnfer an & Cala ¥ a

: A @ ([imieraan sysiam Solandi_x -~ o % 5 7 5L
rder ArCgeunk Trade Log LALSMCH Fendameesaly '+ Bapep T radar CptionTrader Aty FETrade Char Condigure
Untitled X AP1 + =y e

e Last Change Change % Bid Size Did Ask AskSire Position Ava Price PRL
IBM 4]
YHOO
ANPL
GOOG
FB
IBM Jani7'14 2
L D e s S
i Last Login: Sep 11, 09:49 _ 00 & QO 09:01:35

e Mosaic, a single, comprehensive and intuitive workspace which provides easy access to
Trader Workstation’s trading, order management and portfolio functionality.

Getting Started with the TWS ActiveX API 14

TWS and the ActiveX API
Chapter 1 - What is Trader Workstation?

DATA -

File Account Help .
Evest Calindars Mews Anabyst Rassarch an e o I - - 09:03:39

Fa

uaoiign M oo -

waniid4a A o0 -

To get a little bit of a feel for TWS, go to the IB website and try the TWS
:\ demo application. Its functionality is slightly limited and it only supports a
‘ small number of symbols, but you'll definitely get the idea. Once you
have an approved, funded account you'll also be able to use PaperTrader,
our simulated trading tool, with paper-money funding in the amount of
$1,000,000, which you can replenish at any time through TWS Account

Management.

Getting Started with the TWS ActiveX API 15

TWS and the ActiveX API
Chapter 1 - What is Trader Workstation?

What Can You Do with TWS?

So, what can you do with TWS? For starters, you can:

e Send and manage orders for all sorts of products (all from the same screen!);
e Monitor the market through Level II, NYSE Deep Book and IB's Market Depth;
e Keep a close eye on all aspects of your account and executions;

e Use Technical, Fundamental and Price/Risk analytics tools to spot trends and analyze
market movement;

e Completely customize your trading environment through your choice of modules,
features, tools, fonts and colors, and user-designed workspaces.

Basically, almost anything you can think of TWS can do - or will be able to do soon. We are
continually adding new features, and use the latest technology to make things faster, easier
and more efficient. As a matter of fact, it was this faith in technology's ability to improve a
trader's success in the markets (held by IB's founder and CEO Thomas Peterffy) that launched
this successful endeavor in the first place. Since the introduction of TWS in 1995, IB has
nurtured this relationship between technology and trading almost to the point of obsession!

A Quick Look at TWS

This section gives you a brief overview of the most important parts of TWS.

The TWS Quote Monitor

First is the basic TWS Quote Monitor. It's laid out like a spreadsheet with rows and columns.
To add tickers to a page, you just click in the Underlying column, type in an underlying symbol
and press Enter, and walk through the steps to select a product type and define the contract.
Voila! You now have a live market data line on your trading window. It might be for a stock,
option, futures or bond contract. You can add as many of these as you want, and you can
create another window, or trading page, and put some more on that page. You can have any
and all product types on a single page, maybe sorted by exchange, or you can have a page for
stocks, a page for options, etc. Once you get some market data lines on a trading page, you're
ready to send an order.

The Order Ticket

What? An order ticket? Sure, we have an order ticket if that's what you really want. But we
thought you might find it easier to simply click on the bid or ask price and have us create a
complete order line instantly, right in front of your eyes! Look it over, and if it's what you want
click a button to transmit the order. You can easily change any of the order parameters right
on the order line. Then just click the green Transmit guy to transmit your order! It's fast and
it's easy, and you can even customize this minimal two-click procedure (by creating hotkeys
and setting order defaults for example) so that you're creating and transmitting orders with
just ONE click of the mouse.

Getting Started with the TWS ActiveX API 16

TWS and the ActiveX API
Chapter 1 - What is Trader Workstation?

Real-Time Account Monitoring

TWS also provides a host of real-time account and execution reporting tools. You can go to the
Account Window at any time to see your account balance, total available funds, net liquidation
and equity with loan value and more. You can also monitor this data directly from your trading
window using the Trader Dashboard, a monitoring tool you can configure to display the last
price for any contracts and account-related information directly on your trading window.

So - TWS is an all-inclusive, awesome powerful trading tool. You may be wondering, "Where
does an API fit in with this?" Read on to discover the answer to that question.

For more information on TWS, see the TWS Users' Guide on our
web site.

Getting Started with the TWS ActiveX API 17

TWS and the ActiveX API
Chapter 2 - Why Use the TWS ActiveX API?

Chapter 2 - Why Use the TWS ActiveX API?

OK! Now that you are familiar with TWS and what it can do, we can move on to the amazing
API. If you actually read the last chapter, you might be thinking to yourself "Why would I want
to use an API when TWS seems to do everything." Or you could be thinking "Hmmmm, I
wonder if TWS can... fill in the blank?" OK, if you're asking the first question, I'll explain why
you might need the API, and if you're asking the second, it's actually the API that can fill in the
blank.

TWS has the capability to do tons of different things, but it does them in a certain way and
displays results in a certain way. It's likely that our development team, as fantastic as they
are, hasn't yet exhausted the number of features and way of implementing them that all of
you collectively can devise. So it's very likely that you, with your unique way of thinking, will
be or have been inspired by the power of TWS to say something like "Holy moly, I can't
believe I can really do all of this with TWS! Now if I could only just (fill in the blank),my life
would be complete!"

That's where the API comes in. Now, you can fill in the blank! It's going to take a little work to
get there, but once you see how cool it is to be able to access functionality from one
application to another, you'll be hooked.

TWS and the API

In addition to allowing you pretty much free reign to create new things and piece together
existing things in new ways, the API is also a great way to automate your tasks. You use the
API to harness the power behind TWS - in different ways.

Here's an analogy that might help you understand the relationship between TWS and the API.
Start by imagining TWS as a book (since TWS is constantly being enhanced, our analogy
imagines a static snapshot of TWS at a specific point in time). It's the reference book you were
looking for, filled with interesting and useful information, a book with a beginning, middle and
end, which follows a certain train of logic. You could skip certain chapters, read Chapter 10
first and Chapter 2 last, but it's still a book. Now imagine, in comparison, that the API is the
word processing program in which the book was created with the text of the book right there.
This allows you access to everything in the book, and most importantly, it lets you continually
change and update material, and automate any tasks that you'd have to perform manually
using just a book, like finding an index reference or going to a specific page from the table of
contents.

The API works in conjunction with TWS and with the processing functions that run behind
TWS, including IB's SmartRouting, high-speed order transmission and execution, support for
over 40 orders types, etc. TWS accesses this functionality in a certain way, and you can design
your API to take advantage of it in other ways.

Getting Started with the TWS ActiveX API 18

TWS and the ActiveX API
Chapter 2 - Why Use the TWS ActiveX API?

Available API Technologies

IB provides a suite of custom APIs in multiple programming languages, all to the same end.
These include Java, C++, Active X for Visual Basic and .NET, ActiveX for Excel, DDE for Excel
(Visual Basic for Applications, of VBA), CSharp and POSIX. This book focuses specifically on
just one, the ActiveX version. Why would you use ActiveX over the other API technologies?
The main reason might be that you are an ActiveX expert. If you don't know ActiveX or any
other programming language, you should take a look at the Excel/DDE API, which has a much
smaller learning curve. But if you know ActiveX, this platform offers more flexibility than the
DDE for Excel (the DDE is only supported in Windows), and provides very high performance.

For more information about our APIs, see the Trading Technology >
API Solutions page on our web site.

An Example

It's always easier to understand something when you have a real life example to contemplate.
What follows is a simple situation in which the API could be used to create a custom result.

TWS provides an optional field that shows you your position-specific P&L for the day as either
a percentage or an absolute value. Suppose you want to modify your position based on your
P&L value? At this writing, the only way to do this would be to watch the market data line to
see if the P&L changed, and then manually create and transmit an order, but only if you
happened to catch the value at the right point. Hmmmmm, I don't think so! Now, enter the
API! You can instruct the API to automatically trigger an order with specific parameters (such
as limit price and quantity) when the P&L hits a certain point. Now that's power! Another nice
benefit of the API is that it gives you the ability to use the data in TWS in different ways. We
know that TWS provides an extensive Account Information window that's chock-full of
everything you'll ever want to know about your account status. The thing is, it's only displayed
in a TWS window, like the one on the next page.

Getting Started with the TWS ActiveX API 19

TWS and the ActiveX API

Chapter 2 - Why Use the TWS ActiveX API?

T Account

File Portfalic Currencies

@ Balances =
Parameter Tokal 1B-U5S Securi...18-US Comm... IB-UK Regul...
Met Liquidation Value 0 usD 0 usD 0 usoD 0 USD =1
Equity With Loan Value o usD 0 usD 0 UsD 0 UsSD =
Previous Day Equity with Loan Value 0 usD 0 uspD]
Reg T Equity with Loan Value 0 usD 0 usD |
Securities Gross Position Valua 0 usD 0 usD o usD L
Cash o usD 0 usD 0 uso 0 usD =
Accrued Interast 0 usoD 0 usD 0 uso 0 uso
© Margin Requirements Th =
Parameter Total 1B-US Securi...18-US Comm... IB-UK Regul...
RegT Margin 0 usD 0 usD sl
Current Initial Margin 0 usp 0 Usp 0 uso 0 USD &
Post-Expiry Margin @ Open (predicted) 0 usp 0 usp 0 wsp oush Ll
Current Mamtenance Margin 0 usoD 0 usD 0 uso 0 UsSDh +
Projected Look Ahead Initial Margin 0 usD 0 UsD 0 usD o usp]
Projected Look Ahead Maintenance Margin 0 usD 0 UsD 0 USD ouso LI
Projected Overnight Initial Margin 0 uso 0 usD 0 wsp 0 usp
Projected Crvernight Maintenance Margin 0 uso 0 uso 0 uso 0 usb
@ Available for Trading -
Parameter Total 18-US Securn...1B-US Comm... [B-UK Regul...
Current Available Funds 0 uUsD 0 UsD 0 UsD 0 USD »
Current Excess Liquidity 0 usD 0 uUso 0 uso 0 USD »
Post-Expiry Excess (predicted) 0 usoD 0 usD 0 uso 0 ush
Speciial Memorandum Account 0 usD 0 usD i
Look Ahead Available Funds 0 usD 0 UsD 0 UsSD ousp L]
Look Ahead Excess Liquidity o usp 0 usD 0 wspD o usp
Owvernight Awvailable Funds 0 ushD 0 usD 0 wsD ousp Ll
Owvernight Excass Liquidity 0 usD 0 usp 0 usp ousp Ll
Buying Pawer 0 usD L
Leverage 0.00 0.00 L
Look Ahead Mext Change Unkrnowr
Day Trades Left {T,...,T+4) (3.3,3,3,3) L]

@ Market Value - Real FX Balance @D
Currency Total Cash FX Cash Stock Options Futures FOPs Nt Lgdtn W1 Unrlzd PEL Rlzd P&L
uspD Q Q Q 0 0 o o Lo} a
© FX Portfolio - Virtual FX Position <
@ Portfolio *mOS
Filter | More options O |

Last updatad at 09:05

Lovely though it is, what if you wanted to do something else with this information? What if you

want it reflected in some kind of banking spreadsheet where you log information for all

accounts that you own, including your checking account, Interactive Brokers' account, 401K,

ROIs, etc? Again - enter the API!

You can instruct the API to get any specific account information and put it wherever it belongs

in a spreadsheet. The information is linked to TWS, so it's easy to keep the information

updated by simply linking to a running version of TWS. With a little experimenting, and some

help from the API Reference Guide and the TWS Users' Guide, you'll be slinging data like a

short-order API chef in no time!

There are a few other things you must do before you can work with the TWS ActiveX API. The

next chapter gets you geared up and ready to go.

Getting Started with the TWS ActiveX API

20

Preparing to Use the ActiveX
API

Although the API provides great flexibility in implementing your automated trading ideas, all of
its functionality runs through TWS. This means that you must have a TWS account with IB,
and that you must have your TWS running in order for the API to work. This section takes you
through the minor prep work you will need to complete, step by step.

Here's what you'll find in this section:

e Chapter 3 - Install an IDE
e Chapter 4 - Download the API Software
e Chapter 5 - Connect to the ActiveX API Sample Application

We want to tell you again that this book focuses on the TWS side of
the ActiveX API - we don't really help you to learn Visual Basic.
Unless you are a fairly proficient VB programmer, or at least a very
confident and bold beginner, this may be more than you want to
take on. We suggest you start with a beginner's Visual Basic
programming book, and come back to us when you're comfortable with the
language.

Getting Started with the TWS ActiveX API 21

Preparing to Use the ActiveX API
Chapter 3 - Install an IDE

Chapter 3 - Install an IDE

OK, well we've already said that you need to know Visual Basic before you can successfully
implement your own TWS ActiveX for Visual Basic API application, and there's a good chance
you already have the tools you'll need downloaded and installed. But in case you don't, we'll
quickly walk you through what you need, which is simply an integrated development
environment (IDE) that supports Microsoft Visual Basic and the Microsoft .NET framework.

In this book we use Microsoft Visual Studio 2008 as the IDE of choice.
We'll try to keep the Visual Studio-specific instructions to a minimum,
but if you're using another IDE you'll have to interpret those
instructions to fit your development environment. If you're using Visual
Studio 2008 and aren't totally familiar with it, we recommend browsing
through the How Do I section of the online help, which you can access from Visual
Studio’s Help menu.

Programming Languages, ActiveX and Microsoft Visual Studio 2008

Y

simply need a refresher course in Visual Studio 2008’s supported
ol languages.

'\'\ Read this section if you are new to Microsoft Visual Studio 2008 or

Microsoft Visual Studio 2008 includes Microsoft’s .NET framework and supports the following
.NET programming languages:

e Visual Basic (also called VB.NET)
e Visual C#
e Visual C++

Our TWS ActiveX API is written in Visual Basic. Another way to say this is that we have created
our TWS ActiveX component using Visual Basic code. What does this have to do with you? It

simply means that you can use Visual Studio 2008 to work with our API Visual Basic code to

create your own ActiveX-based trading application.

0 Programming languages and associated technologies can have many

names, depending on the person doing the naming. VB.NET is just
. another name for Microsoft’s latest version of the Visual Basic

language. Our ActiveX API was written in Visual Basic 6, but our API
software comes with two different versions of the sample application: one
prebuilt Visual Basic version, and one VB.NET version that hasn’t been built. If
you're confused about this, don’t worry. Chapter 5 gives you more information
about the two different versions of the ActiveX sample application. For
purposes of this book, we use the terms “ActiveX sample application” and
“Visual Basic sample application” interchangeably.

Getting Started with the TWS ActiveX API 22

Preparing to Use the ActiveX API
Chapter 3 - Install an IDE

Anyway, we're not giving you too much here, but we are assuming you have enough savvy to
find this stuff, download it, and install it. This is a tough line for us to walk, because we're
really focusing on getting started with the TWS ActiveX API, not on getting started with
ActiveX or Visual Basic. If you're having trouble at this point, you should probably start with
the TWS DDE for Excel API to get your feet wet!

Once you have these pieces downloaded and installed, you can go to the IB website and
download the TWS API software.

Getting Started with the TWS ActiveX API 23

Preparing to Use the ActiveX API
Chapter 4 - Download the API Software

Chapter 4 - Download the API Software

Next, you need to download the API software from the IB website.

Step 1: Download the API software.

This step takes you out to the IB website at
dividuals.interactivebrokers.com/en/index.php?f=1325. The menus are along the

top of the homepage. Hold your mouse pointer over the Trading Technology menu, then click
API Solutions.

% Interactive Brokers n

Traders + brerviors [EEEEIESECUREEL S LD

Wiy 1B Casts Trading Technology Froducts & Services

Deskrap Tindag LimanPoutag
aobetr Trpdersy Chdhed Types asad Aigas
Wak Tendng Pager Tradng Accoure

Flarizrm D
Dmerioasd TWS

B Mews Headlines

Depth & Breadth of Products

Frade on oeer [0 market centers
w22 cowngries. Direct markel access
b slacks, options, fulures, fores,
bonds, ETFs and CFDs from
& singde |18 Universal Acoosimi®,
Fuird your S0Count in mulisphe Cirmenies,

On the API Solutions page, click the more info button next to IB API.

P et st b £y e g 11T

—
=
£ Build your cwn trading applications in Excel {using DDE or ActiveX), C++,
: Posix C=+, Java, and Visual Basic for AcuveX using IB's Application
.03} Programming Interface (AFT). The IB AFl connects through Trader Workstation
= {TW5) or the |B Garveway, and does not require additional technical gverhead
(=2 such as a dedicated FIX server.

Getting Started with the TWS ActiveX API 24

https://www.interactivebrokers.com/en/index.php?f=1325

Preparing to Use the ActiveX API
Chapter 4 - Download the API Software

On the next page that appears, click the API Software button.

IE API L

Our proprietary APl solutions let you create your own automated rule-based trading system
that takes advantage of our high-speed order routing and broad market depth.

1B APl Software

Program raders may Budd thes own add-an applicabieni vh Excel {uiang DDE o ActveX), C+4, Podax T4 lava, and Visual Batie for ActveX with gur

nrannetary IR Ancheatinn Proaram Inteeface (@FT which reaaires cannecfvify sia rither e TWS ar the IR Gatewne 'We sncooersne SF1 omerd o feed their &P

Click the I Agree button on the license agreement page to open the API software download
page.

This displays the IB API page which shows a table with buttons that initiate the API software
download process for Windows, MAC or Unix platforms. When available, there will also be a
Windows Beta version of the software. Find the OS you need, then click the button to
download the API installation program.

Getting Started with the TWS ActiveX API 25

Preparing to Use the ActiveX API
Chapter 4 - Download the API Software

“ Interactive Brokers

Wersion: AF19.69 Version: AP 9.69
Release Date: Juby 1 2012 Release Date Juby 1 2012
Version: AF1 beta 5. 70 Wersion: APl beta 9.70
Release Date: Sep 9 2013 Releate Date: Sep 9 2013

IB A Previous Tor Wndows

ncludbes the £+ Socke, lavs Secken. DOE Aotk ¥ AP, and sampls code foo sk Ieschuchan. th farea Socker APE. Pasin £+ Socker &M and sampls code for sach

Supporc AP Reference "o i

Wone

A m reminder, the uen of the I8 AP ap @ meang of dispemisasing information. mcluding market daia o sy athar liceneed or cogyrighisd informacan, o third parties

o rgn-segistered 1B custamars & iorictly prohiited without praor wricen approval of Iscsrsctive Broken

\

using a different operating system (Mac, Unix), be sure to adjust
e the instructions accordingly!

'\'\ For this book, we assume that you are using Windows. If you're

In the Windows column, click the IB API for Windows button. This opens a File Download
box, where you can decide whether to save the installation file, or open it. We recommend you
choose Save and then select a place where you can easily find it, like your desktop (you
choose the path in the Save in field at the top of the Save As box that opens up). Once you've
selected a good place to put it, click the Save button. It takes seconds to download the
executable file. Note that the API installation file is named for the API version; for example,
TWS API Install 9.69.01.msi.

\

need to make sure TWS is not running. If it is, you won't be able to
ol install the API software.

'.\'\ We'll usually be stressing just the opposite, but at this point, you

Getting Started with the TWS ActiveX API 26

Preparing to Use the ActiveX API
Chapter 4 - Download the API Software

Step 2: Install the API software.

Next, go to the place where you saved the file (for example, your desktop or some other
location on your computer), and double-click the API software installation file icon. This starts
the installation wizard, a simple process that displays a series of dialogs with questions that
you must answer.

[81 TWS AP Setup E=REER

@ Welcome to the TWS API Setup Wizard

The Setup Wizard allows you to change the way TWS API
features are installed on your computer or to remove it from
your computer, Click Mext to continue or Cancel to exit the
Setup Wizard.

Once you have completed the installation wizard, the sample application installs, and you're
ready to open the ActiveX sample application, connect to TWS, and get started using the
ActiveX API!

ActiveX controls must be registered before you can use them. When
you install our API software, the TWS ActiveX control, Tws.ocx, is
. automatically registered for you. So if you install the Beta API

software, the beta version of the TWS ActiveX control is registered and
the production version of the ActiveX control is no longer registered. This is
important to remember because if you try to run the production version of the
ActiveX sample application after having installed the Beta API software, you
will get errors unless you re-register the production version of the TWS ActiveX
control!

Getting Started with the TWS ActiveX API 27

Preparing to Use the ActiveX API
Chapter 5 - Connect to the ActiveX Sample Application

Chapter 5 - Connect to the ActiveX Sample
Application

OK, you've got all the pieces in place. Now that we're done with the prep work, it's time to get
down to the fun stuff.

Although the API provides great flexibility in implementing your automated trading ideas, all of
its functionality runs through TWS. This means that you must have a TWS account with IB,
and you must have TWS running in order for the API to work. This section describes how to
enable TWS to connect to the ActiveX API. Note that if you don't have an account with IB, you
can use the Demo TWS system to check things out.. If you DO have an account, we
recommend opening a linked PaperTrader test account, which simulates the TWS trading
environment, and gives you $1,000,000 in phantom cash to play with.

Multiple Versions of the Sample Application
We mentioned this before in passing, but let’s talk about it again here. That's right, we've
included more than one version of the ActiveX sample application with our API software:

e Visual Basic: This sample application was programmed in Visual Basic.

e VB.NET: This sample application looks and works exactly like the Visual Basic version,
except that it is compatible with Microsoft’s VB.NET version of Visual Basic. This sample
application has not been built, so you have to open it in MS Visual Studio and build and
run it from there.

For this book, it doesn’t matter which sample application you run, although we recommend

running the VB.NET version. The API methods, events and parameters are the same, and the
sample application itself looks and works the same way.

Getting Started with the TWS ActiveX API 28

Preparing to Use the ActiveX API
Chapter 5 - Connect to the ActiveX Sample Application

Connecting to the VB.NET Sample Application from Visual Studio 2008

If you prefer, you can run the VB.NET sample application from within Microsoft Visual Studio
2008. Here's how:

Step 1: Log into TWS.

OK, log into TWS by clicking Login > Trader Workstation Latest or Trader Workstation
(which is the TWS version released prior to the latest version), or run the Demo available by
clicking the Demo button on the Trading Technology > Desktop Trading page on our website.

Step 2: Enable TWS to support the ActiveX API.

This step is the also the same for both versions of the sample application; again, we're
repeating it for your convenience.

Click the Edit menu, and then click Global Configuration. In the Configuration window, click
API in the left pane, then click Settings, which reveals several options on the right side of the
window. Check the Enable ActiveX and Socket Clients check box and click OK.

Step 3: Run the VB.NET Sample Application.

Here’s how to do this:

1 Navigate to the samples\TestActiveX_VB.NET folder in your API installation folder, then
rename the *.vbproj file.

We recommend renaming the original *.vbproj file because Visual Studio will regenerate
the project files to be compatible with both 32- and 64-bit operating systems.

2 Open Visual Studio 2008, then select Open > Project/Solution from the File menu.

3 Browse to your TWS API installation folder, then select the *.vbproj file that you
renamed in the samples\TestActiveX_VB.NET folder.

4 The Visual Studio Conversion Wizard opens. Click Next to run the Wizard and convert
the project to the Visual Studio 2008 format.

The initial Conversion Wizard screen is shown on the next page.

Getting Started with the TWS ActiveX API 29

Preparing to Use the ActiveX API
Chapter 5 - Connect to the ActiveX Sample Application

Visual Studio Conversion Wizard

Welcome to the Visual Studio
Conversion Wizard

The solukion or project wou are opening was created i
wersion af Yisual Studio, Ik must be converted to the |
this wersion, Afker a solukion ar any of its projects has
converked, it may no longer be possible to edit, build,
previous versions,

If the solution or project is under source control, it wil
ouk automatically during the conversion, Be sure the
Control Plug-in is active, and no files are exclusively ot
akther users,

Click. Mext to proceed,

5 When Conversion Wizard is complete, press Ctrl+F5.

Getting Started with the TWS ActiveX API

30

And here’s the sample application:

= ¥B 6.0 Sample using TWS ActiveX Control

Maked and Histewical Data

TWS 5 erver Responte:

Preparing to Use the ActiveX API
Chapter 5 - Connect to the ActiveX Sample Application

Discornect

Fleq bkt Data
Cancel Mkt Data
Fieq Mt Depth,

Cancel Mit Depth. .
Higtorical Data.,
Carcel Hel Data.
Feal Time Bars
Canc Real Time Bae
Cusrert Time
Mlarket Scanne..

Emces and Mestage:

Coabc Imphesd Vol
Cancel Calc Impl Vol .
Cal: Opption Prce...
Cancal Calc Opt Price. .
Wwhat IF._.

Pllace Dpdes_.
Cancel Osder...
Ewercere Dptons: .
Extended..
Fieq Comiract Data.

Powered by 1B TWS Cloar

Feq Open Diders
R &0 Opey Oirclers
ReqAuto Open Ovdess
Reqacct Data .
Fleqg Exscubions. .
Fieq Mt 1d .
FeqMews Bulletng .,
Lo Configuration...
Fleq Accounts
Francial Advizor

What'’s Next

Part 3 focuses on performing market data-related trading tasks defined by the action buttons
in the sample client. We'll take a quick, general look at what's going on behind the GUI. Then
we'll walk through the basics of requesting market data using the TWS ActiveX API.

Getting Started with the TWS ActiveX API

31

Preparing to Use the ActiveX API
Chapter 5 - Connect to the ActiveX Sample Application

Getting Started with the TWS ActiveX API 32

Market Data

You've completed the prep work, and you have the ActiveX sample application up and running.
This section of the book starts with a description of the basic framework of the sample
application, then reviews the TWS ActiveX API methods associated with each trading task.

This section describes how to connect the sample application to TWS and how to perform
market data-related tasks such as requesting and canceling market data, historical data and
real time bars, as well as how to subscribe to market scanners and get contract data. We'll
show you the methods, events and parameters behind these trading tasks.

Here's what you'll find in this section:

Chapter 6 - Connecting to TWS

Chapter 7 - Requesting and Canceling Market Data

Chapter 8 - Requesting and Canceling Market Depth

Chapter 9 - Requesting and Canceling Historical Data

Chapter 10 - Requesting and Canceling Real Time Bars

Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

Chapter 12 - Requesting Contract Data

Using the ActiveX sample application is a good way to practice locating and using the
reference information in the API Reference Guide. With the sample program, you can compare
the data in the sample message with the method parameters in the API Reference Guide.

Getting Started with the TWS ActiveX API 33

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/activex_com_objects.htm

Market Data

Chapter 6 - Connecting to TWS

Chapter 6 - Connecting to TWS

This chapter describes the basic framework of the ActiveX sample application and what

happens when you connect and disconnect to a running instance of TWS.

ActiveX Sample Application Basic Framework

Let's take a look at the basic framework of the ActiveX sample application and the ActiveX API.
Here's the ActiveX sample application when you first run it:

= ¥B 6.0 Sample using TWS ActiveX Control

Markel and Histodical Data

TS 5 erver Responses

Discarnect

Emces and Message:

Powered by IB TWS Clea

Fesg Mict Data
Cancel Mkt Data.
Fieq Mkl Depth, J

Cancel Mkt Depth .
Historncal Diata..
Cancel Hel Data.
Real Teme Bars
Canc Real Time Bas
Cusrent Time
Mkt Scanme...
Coale Imnplied Volaliy.
Cancel Calc Impd Vol .
Caic Option Frice...
Cancel Calc Oipt Price...
‘what If_,

Place Ordes .
Cancel Duder...
Exercare Dpton: ..

Extended.

Rieq Coniract Dasta. 1
Fieq Open Diders
R &0 Opesy Dirders
ReqAuto Open Oiders
ReqAcct Data .
Req Exscubions. .
Feeq Mest 1d .
Fleg Mews Bulletns_..
Liog Configuration..

Fleq Acoounts
Fnancial Advizor

Getting Started with the TWS ActiveX API

34

digMainWnd

Market Data
Chapter 6 - Connecting to TWS

The sample application pictured on the previous page is defined in the code as digMainWnd,
which is a standard Windows form. If you look at the code for the form, in addition to
Windows-generated code, you will see declarations, a few public functions, event handlers for
button and TWS events, and XML Utilities already defined for you.

digMainWnd is unique to the sample application; it is not part of the TWS ActiveX
API and therefore is not documented in the API Reference Guide.

Every button in the sample application has a corresponding button event in the code that
defines what happens when you click that button. The event handlers for the buttons on the
main sample application window are all located in the code for dlgMainWnd.

What Happens When I Click the Connect Button?

Connect...

The very first thing you do with the ActiveX sample appliction is to connect it to a running
instance of TWS. You click the Connect button to do this. This displays the Connect dialog,

shown below.

Connection Parameters

IP Address (leave blank for local host)

Port

7496

Client [T

0

ik

Cancel

%]

e IP Address - This the IP address of the systemwhere Trader Workstation is installed. If
TWS and the API are installed on the same computer, you can either leave this field

blank, or enter 127.0.0.1 to indicate local host.

e Port - 7496 is the default port nhumber, but you can modify this if you need to.

e C(Client ID - This is used to determine each API connection. Each connection must have a

unique Client ID.

Getting Started with the TWS ActiveX API

35

Market Data
Chapter 6 - Connecting to TWS

Then you can enter the IP Address, Port and Client Id values in the input fields of the dialog.
When you click the OK button, the Connect dialog closes and a message indicating that you
are connecting to TWS is displayed in the TWS Server Responses text panel on the sample
application window. A confirmation dialog appears in TWS; click Yes to confirm that you want

to connect. Note that this dialog does not appear if the IP Address of your connection is local
host.

T Interactive Brokers Trader Workstation |

Accept incoming connection attempt?

[*ves) (Mo |

Finally, a message indicating that you have successfully connected to TWS appears in the TWS
Server Responses text panel on the sample application window.

TWE Server Responzes

Connecting to Tws using clientld 0 ..
Connected to Tws server verzion 40 at 20080312 11:00:17 EST

That’s what happens on the user side of things. Now let’s see what happens behind the
scenes.

Getting Started with the TWS ActiveX API 36

Market Data
Chapter 6 - Connecting to TWS

Connect Button Event Handler

When you click the Connect button, the event handler called emdConnect_Click and defined
in dlgMainWnd and runs. Here is what the code for the event handler looks like:

Connect Button Event Handler

Private Sub cmdConnect Click(ByVal eventSender As System.Object, ByVal eventArgs As
System.EventArgs) Handles cmdConnect.Click
' assume this is a non Financial Advisor account. If it is the managedAccounts ()
' event will be fired.
m_ faAccount = False

m dlgConnect.ShowDialog ()
If m dlgConnect.ok Then
With m dlgConnect
Call m utils.addListItem(Utils.List Types.SERVER RESPONSES,
"Connecting to Tws using clientId " & .clientId & " ...")

Call Twsl.connect(.hostIP, .port, .clientId)

If (Twsl.serverVersion() > 0) Then
Dim msg As String
msg = "Connected to Tws server version " & Twsl.serverVersion ()

&
" at " & Twsl.TwsConnectionTime ()
Call m utils.addListItem(Utils.List Types.SERVER RESPONSES, msg)
End If
End With
End If
End Sub

Getting Started with the TWS ActiveX API 37

Market Data
Chapter 6 - Connecting to TWS

cmdConnect_Click does the following:

e Sets m_faAccount equal to False, which identifies this as a non-Financial Advisor (FA)
account. If this is an FA account, then the managedAccounts() method would be called.
But you don't have to worry about this right now.

e Displays the Connect dialog.

e Calls m_utils.addListItem(Utils.List_Types.SERVER_RESPONSES) to display the
message “Connecting to Tws using client Id” and inserts the client Id you entered in the
Connect dialog. m_utils.addListItem is defined in the Utils object.

e (Calls the ActiveX connect() method and passes the input values for the IP Address
(.hostIP), Port (.port) and Client ID (.clientld) fields to TWS as parameters of the
connect() method.

e If the connection to TWS is successfully established, calls
m_utils.addListItem(Utils.List_Types.SERVER_RESPONSES) again, this time to display
the message “"Connected to Tws server version” and inserts the TWS server version.

Disconnecting from a Running Instance of TWS

Dizconnect

To disconnect from a running instance of TWS, click the Disconnect button in the ActiveX
sample application. When you do this, cmcDisconnect_Click, the event handler for the
Disconnect button, calls the disconnect() ActiveX method, which disconnects the sample
application from TWS. It's that simple!

Here’s what cmdDisconnect_Click looks like:

Disconnect Button Event Handler

Private Sub cmdDisconnect Click(ByVal eventSender As System.Object, ByVal
eventArgs As System.EventArgs) Handles cmdDisconnect.Click

Call Twsl.disconnect()

End Sub

When the sample application disconnects from TWS, an additional event handler in
dlgMainWnd runs. When this event handler runs, the connectionClosed() ActiveX event
provides notification that the TWS-API connection has been broken.

connectionClosed() Event Handler

Private Sub Twsl connectionClosed (ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles Twsl.connectionClosed
Call m utils.addListItem(Utils.List Types.ERRORS, "Connection to Tws
has been closed")
' move into view

lstErrors.TopIndex = lstErrors.Items.Count - 1
End Sub

OK, got all of that? Great! Now let's move on, and see what happens when you use the market
data buttons.

Getting Started with the TWS ActiveX API 38

Market Data

Chapter 7: Requesting and Canceling Market Data

Chapter 7: Requesting and Canceling Market

Data

This chapter describes how the ActiveX sample application requests and cancels market data.
You click the Req Mkt Data button to display the Request Market Data dialog, then enter
information in the appropriate fields and click OK.

The following image shows the Request Market Data dialog and the fields you need to fill in to

get market data.

= Request Market Data

¢ Teniact Deseiiption

ContractId o

Symbcl oo

e T —

Expiy P

Stk I

Right li

Mukipbe —

Exchange SHART

Primasy Enchangs [

Eunorc T

Lecal Symbal

Include Expred [5

Sec bd Typs [

Secid I

N
Maket Diepth
Deoth Ao
Exarciza Optiors

fction(loc) [

Quardity n

Dvemde0oil) [T
ok |

Ouder Drezciplion
Aichion
Dusantily
DOede Type r
Lmt/Opt Prce £ li
Volatlly
AazeUrder Prica
Good Aited Time
Good Till Date
| ComboLegs |

DefaNeural | AoPaams |

Markes Dista

Generic Tick Tags [100,101,104,10

[Snapshot

Hisbonical D.ata

End Date/Tima 1

Qusry Duration

Bar Size Setling

what bo Shows

Regular Trading .
Howrs i1 or 0

[t Format l—
Sile 1 o6 2]

Cancel |

Getting Started with the TWS ActiveX API

39

Market Data
Chapter 7: Requesting and Canceling Market Data

What Happens When I Click the Req Mkt Data Button?

Req hkt Data. ..

Once you connect to TWS using the ActiveX sample application, you get market data by
clicking the Req Mkt Data button, then entering an underlying and some other information in
the Request Market Data dialog, such as symbol, type, and exchange, and clicking OK. The
market data you request is displayed in the Market and Historical Data text panel, as shown
below.

Market and Historical Data

id=0 CptionPut® olume=3252884 Y
id=0 volume=12415849

id=0 hid=ize=1938

id=0 azkzize=1131

id=0 hid=ize=1932

id=0 azkIize=1231

id=0 hid=ize=1931

id=0 azksize=1236

id=0 hid=ize=1929

id=0 CptionPut olume=2352556
id=0 azkSize=1244

id=0 azksize=1233

£ *

g The Symbol, Security Type, Exchange and Currency values are required for all instrument

} types. If your security type is STK, those four values are all you need. But if you're

‘ looking for the latest price on a Jan08 27.5 call, you need to give the method a bit more
than that. The moral: be sure you include values in the appropriate fields based on what

return values you want to get.

That's what happens from a user’s point of view. But what’s really happening?

Req Mkt Data Button Event Handler

When you click the Req Mkt Data button, the event handler cmdReqMktData_Click,
defined in dlgMainWnd, runs. Here is what the code for the event handler looks like:

Req Mkt Data Button Event Handler

Private Sub cmdRegMktData Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdRegMktData.Click
' Set the dialog state
m dlgOrder.init ((dlgOrder.Dlg Type.REQ MKT DATA DLG),
m contractInfo, m orderInfo, m underComp, Me)

m dlgOrder.ShowDialog ()
If m dlgOrder.ok Then
Call Twsl.regMktDataEx(m_dlgOrder.orderId, m _contractInfo,
m dlgOrder.genericTickTags, m dlgOrder.snapshotMktData)
End If -
End Sub

Getting Started with the TWS ActiveX API 40

Market Data
Chapter 7: Requesting and Canceling Market Data

_ The code samples in this book may not look exactly like the code

when you view it Visual Studio. Don’t worry, the code is exactly the
' . same. We've simply added a few extra line breaks so that the code
®) samples fit the size of the pages in the book.

cmdReqMktData_Click does the following:

e Sets the state of the dlgOrder object by setting
dlgOrder.DIlg_Type.REQ_MKT_DATA_DLG. This initializes the Request Market Data
dialog. (The different states of the dlgOrder object are described in the next section,
below.)

o Displays the Request Market Data dialog.
e Calls the ActiveX method reqMktDataEx() when the OK button is clicked.

States of the digOrder Object

Before we continue with market data requests using the ActiveX API sample application, let’s
stop and take a look at the Request Market Data dialog. This is the dialog that is pictured at
the beginning of this chapter.

As you work through the different trading tasks described in this book, you will notice that the
same dialog box is used for a variety of functions. This is the dlgOrder object, and it is used in
slightly different forms to:

e request and cancel market data;

e place and cancel orders;

e request and cancel market depth;

e request contract details;

e request and cancel historical data;

e request and cancel real time bars

e exercise options.
Each “version” of the dlgOrder object has its own unique name and has only certain fields and
buttons available. These different versions are defined in the code for the dlgOrder object,

which identifies which sets of fields and buttons are available or unavailable for each version,
and what text appears in the dialog’s title bar.

So, for example, when you request market data, this dialog is called the Request Market Data
dialog ("Request Market Data” appears in the title bar of the dialog), and only those fields
required for market data requests are accessible. The fields required for the other trading
tasks listed above are grayed out and unavailable.

The cmdReqMktData_ Click event handler initializes the correct version of the dialog on
these lines of code:

m_dlgOrder.init ((dlgOrder.Dlg Type.REQ MKT DATA DLG),
m_contractInfo, m orderInfo, m underComp, Me)

Getting Started with the TWS ActiveX API 41

Market Data
Chapter 7: Requesting and Canceling Market Data

The reqMktDataEx() Method

Now let’s get back to requesting market data.

When you click OK in the sample application to submit a market data request, the
reqMktDataEx() method sends your market data request to TWS and, if all the entries are
valid, the requested data is returned by way of the tickPrice(), tickSize(), tickGeneric(),
tickOptionComputation(), tickString() and tickEFP() events. What's really happening
though is that the reqMktDataEx() method triggers a series of “tick” events, which return
the market data from TWS. We’ll look at these tick events a little later.

For now, let's find out which parameters are used for requesting market data. The
reqMktDataEx() method looks like this:

Sub regMktDataEx (ByVal tickerId As Integer, ByVal contract As

TWSLib.IContract, ByVal genericTicklist As String, ByVal snapshot As

Integer)

Parameter Description

tickerld The ticker id. Must be a unique value. When the market data
returns, it will be identified by this tag. This is also used when
canceling the market data.

contract This structure contains attributes used to describe the contract.

genericTicklist A comma delimited list of generic tick types.

snapshot Check to return a single snapshot of market data and have the
market data subscription cancel. Do not enter any
genericTicklist values if you use snapshot.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

As you can see from the table above, this method has four parameters, the first three of which
correspond to the fields in the Request Market Data dialog that you fill in.

Now let's take another look at the Request Market Data dialog and see how and where it
relates to the reqMktDataEx() method.

Getting Started with the TWS ActiveX API 42

= Request Market Data

(E_wm Drescriplion
Contract Id o
Symrbel [Gooa
Type B
Espiy [
Stk o
Right [
Multiplss
Exchange SMART
Primary Exchange [
Cuirenicy S0
LeedlSymbol [
Inchade Expied [0~
Sec bd Type [
Secld [
N
Maiket Depth
Deoth foms
Exercise Optior:

Adioneed) [
Quariiy I
Ovvemade (ar 1)

ok |

Market Data

Chapter 7: Requesting and Canceling Market Data

Order Drezcaiplion
Aiction
CJuandily
DOedar Type
Lmk/ipt Price £ li
Wiolatilby
Aaze/Uredes Prica
Good After Time
Good Till Data

| Combolegs |

Detaeural | AlgoParams |

Market D sta
Generic Tick Tags [100,101,104.10

[Snapshot

Histonical D.ata

End Data/Timea

Guery Duration

Bar Size Sefling

what bo Shioss

Regular Tiading l—
Howrs i1 or 0

Dt Fiotrnat l—
Stde 1 er 2|

Dannd|

The circled sections in the picture above (Ticker Description and Market Data) correspond to
the contract and genericTickList parameters in the reqMktDataEx() method. This means that

the values you entered in the dialog are passed to TWS by the parameters in the

reqMktDataEx() method.The tickerld parameter corresponds to the Ticker ID field in the
dialog. The snapshot parameter is used to get a snapshot of market data; we’ll describe this in
more detail a little later in this chapter.

The contract object (IContract TWS COM object) contains the properties that correspond to
the fields in the Ticker Description section of the Request Market Data dialog. For a complete
list of the properties in the contract structure, see the API Reference Guide. You can ignore the
other fields in the dialog right now because they represent parameters from different
methods. Don't worry, we'll be revisiting them very soon!

Getting Started with the TWS ActiveX API

43

http://individuals.interactivebrokers.com/php/apiGuide/apiguide/activex/icontract.htm

Market Data
Chapter 7: Requesting and Canceling Market Data

*{ IContract is a TWS COM object that is created by the factory method
createContract(). You MUST use the createContract() factory
method to create the IContract object. Once created by a factory
method, a COM object is tied to a corresponding TWS COM object. If

you try to pass a COM object to another TWS COM object instance, you may

get unpredictable results.

ActiveX Events that Return Market Data

As we mentioned before, requested market data is returned to the sample application by way
of the tickPrice(), tickSize(), tickGeneric(), tickOptionComputation(), tickString()
and tickEFP() events, each of which returns a different part of the market data. This means
that there is an event handler in digMainWnd for each “tick” event, and these events are
triggered by the reqMktDataEx() method. Here are the “tick” events:

tickPrice()

Sub tickPrice (ByVal id As Integer, ByVal tickType As Integer, ByVal price
As Double, ByVal canAutoExecute As Integer)

tickSize()

Sub tickSize (ByVal id As Integer, ByVal tickType As Integer, ByVal size As
Integer)

tickOptionComputation()

Sub tickOptionComputation (ByVal id As Integer, ByVal TickType As Integer,
ByVal impliedvVol As Double, ByVal delta As Double, ByVal modelPrice As
Double, ByVal pvDividend As Double)

tickGeneric()

Sub tickGeneric (ByVal tickerId As Integer, ByVal tickType As Integer,
ByVal value As Double)

tickString()

Sub tickString (ByVal Id As Integer, ByVal tickType As Integer, ByVal value
As String)

tickEFP()

Sub tickEFP(ByVal tickerId As Integer, ByVal field As Integer, ByVal basisPoints
As Double, ByVal formattedBasisPoints As String, ByVal totalDividends As Double,
ByVal holdDays As Integer, ByVal futureExpiry As String, ByVal dividendImpact As
Double, ByVal dividendsToExpiry As Double)

For more details about these events and their parameters, see the
ActiveX Events section of the API Reference Guide. For details
about tick types and tick values, see the Tick Types, Generic Tick
Types, and Tick Values topics in the API Reference Guide, available
on our website.

Getting Started with the TWS ActiveX API 44

http://individuals.interactivebrokers.com/apiGuide/activex/activex_events.htm#HT_events
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/tick_types.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/generic_tick_types.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/generic_tick_types.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/tick_values.htm

Market Data
Chapter 7: Requesting and Canceling Market Data

Getting a Snapshot of Market Data

Another way to get market data from TWS to the ActiveX sample application is to get a
snapshot of market data. A market data snapshot gives you all the market data in which you
are interested for a contract for a single moment in time. What this means is that instead of
watching the requested market data continuously scroll by in the Market and Historical Data
text panel of the ActiveX sample application, you get a single "snapshot" of the data. This
frees you from having to keep up with the scrolling data and having to cancel the market data
request when you are finished.

To get snapshot market data, simply click the Req Mkt Data button, then fill in the
appropriate fields in the Request Market Data dialog, and finally check the Snapshot check box
and click OK.

Snapshot is a parameter of the reqMktDataEx() method.

Canceling Market Data

Cancel Mkt Data...

When you click the Cancel Mkt Data button, the Cancel Market Data dialog appears. This is
another version of the same dialog saw when we requested market data; the only difference is
that when you cancel market data, all the fields in the dialog are grayed out except Ticker Id
and Contract Id. Simply click OK to submit your cancellation of the market data.

So what happens in the code when you do this?

When you click the Cancel Mkt Data button, the cmdCancelMktData_Click button event
handler in digMainWnd runs.

Cancel Mkt Data Button Event Handler

Private Sub cmdCancelMktData Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdCancelMktData.Click
' Set the dialog state
m dlgOrder.init ((dlgOrder.Dlg Type.CANCEL MKT DATA DLG),
m contractInfo, m orderInfo, m underComp, Me)

m dlgOrder.ShowDialog ()
If m dlgOrder.ok Then
Call Twsl.cancelMktData(m_dlgOrder.orderId)
End If
End Sub

The cmdCancelMktData button event handler does the following:

e Sets the state of the dlgOrder object by setting
dlgOrder.DIlg_Type.CANCEL_MKT_DATA_DLG. This initializes the Cancel Market Data
dialog.

o Displays the Cancels Market Data dialog.
e Calls the ActiveX method cancelMktData() when the OK button is clicked.

Getting Started with the TWS ActiveX API 45

Market Data
Chapter 7: Requesting and Canceling Market Data

The cancelMktData() Method

This method has a single parameter, id, which is the same ID that was specified in the
reqMktDataEx() call for market data. The cancelMktData() method is shown below.

cancelMktData()

| Sub cancelMktData (ByVal id As Integer) |

Next we’ll see how the ActiveX API handles requests for market depth.

Getting Started with the TWS ActiveX API 46

Market Data
Chapter 8 - Requesting and Canceling Market Depth

Chapter 8 - Requesting and Canceling Market
Depth

This chapter discusses the methods for requesting and canceling market depth in the ActiveX
sample application. We'll show you the methods and parameters behind the sample
application and how they call the methods in the TWS ActiveX API.

For requesting market depth, you need to use the highlighted fields in the Request Market
Depth dialog as shown here:

=, Request Markel Depth

I,f'fn.m.u Desiiplicn “\, (irder Desciiption

Conteact |d 0 Achion
Syl DELL Dusanlity o
Type STE T T —
Espiy

Lmt/OptPrice / 77—
Stike i Wilatibly
Right [r— fuge/Undet Piea [T
Multipliss - GoodAftes Time [~
Excharge ISLAMD Good TlDale [~

Frimasy Exchange [I5LAND
Cumrency [uso
LocalSymbol [2 | __#goPuams |
Inchde Expied [~
Sec id Typa [

I\LS“"‘ T) ::E::E‘)[::Tags [o070770410

| _ comboLey: |

r
r ™)
Market Dapth Historical Data
M Mokt E End Dae/Time [0070000 000 0n
Depth Rows 20
N r z
T i Query Duration

fcton(lee?) [|| BaSweSewng [T
Quarkiy [|| WhawShow [Tiines
L G e
Drate Fomat |—
St 1 e 2]

I]k| I:ant:al|

Getting Started with the TWS ActiveX API 47

Market Data
Chapter 8 - Requesting and Canceling Market Depth

What Happens When I Click the Req Mkt Depth Button?

Req Mkt Degpth...

Once you connect to TWS using the ActiveX sample application, you can request market depth

by clicking the Req Mkt Depth button, then entering information in the Ticker Description
fields in the Request Market Depth dialog and clicking OK. The market depth you request is
displayed in the Market Depth dialog, as shown below.

w. Market Depth for:

Bid Ak
I Piice Size cumnSize avgPrice Il Price Size cumSize avgPrice
14,49 18 18 14.49 14.5 e] 14.5
14.48 ES 84 14.482143 14.51 4 72 14504722
14.47 26 110/ 14.479273 14.52 et 111 1451009
1446 48 158 14.473418 14.53 3 145 14514759
14.45 37 195 14.468374 14.54 33 178 14519439
, Close |

That's what happens from a user’s point of view. Let’s see what’s going on behind the scenes.

Req Mkt Depth Button Event Handler

When you click the Req Mkt Depth button, the event handler cmdReqMktDepth_Click,
defined in dlgMainWnd, runs. Here is what the code for the event handler looks like:

Req Mkt Depth Button Event Handler

End If

End Sub

m dlgOrder.ShowDialog ()
If m dlgOrder.ok Then

m_dlgMktDepth.init ()

Call Twsl.regMktDepthEx (m_dlgOrder.orderld,
m _contractInfo, m dlgOrder.numRows)

m dlgMktDepth.ShowDialog ()

' unsubscribe to mkt depth when the dialog is closed
Call Twsl.cancelMktDepth (m dlgOrder.orderId)

Private Sub cmdRegMktDepth Click (ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdRegMktDepth.Click

' Set the dialog state

m dlgOrder.init ((dlgOrder.Dlg Type.REQ MKT DEPTH DLG),

m contractInfo, m orderInfo, m underComp, Me)

Getting Started with the TWS ActiveX API

48

Market Data
Chapter 8 - Requesting and Canceling Market Depth

cmdReqMktDepth_Click does the following:

e Sets the state of the dlgOrder object by setting
dlgOrder.DIlg_Type.REQ_MKT_DEPTH_DLG. This initializes the Request Market Depth
dialog. (Remember that there are several different “versions” of the dlgOrder object.)

e Displays the Request Market Depth dialog.
e Calls the ActiveX method reqMktDepthEx() when the OK button is clicked.

The reqMktDepthEx() Method

When you click OK in the sample application to submit a market depth request, the
reqMktDepthEx() method sends your request to TWS and, if all the entries are valid, the
requested data is returned by way of the updateMktDepth() and updateMktDepthL2
events. So the reqMktDepthEx() method triggers these two events in order to return market
depth to the sample application.

Now let's see which parameters are used to request market depth. The reqMktDepthEx()
method looks like this:

Sub regMktDepthEx (ByVal tickerId As String, ByVal contract As
TWSLib.IContract, ByVal numRows As Integer)

Parameter Description

tickerId The ticker id. Must be a unique value. When the market data
returns, it will be identified by this tag. This is also used when
canceling the market data.

contract This object contains attributes used to describe the contract.

numRows Specifies the number of market depth rows to return.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

The contract object (IContract TWS COM object) contains the properties that correspond to
the fields in the Ticker Description section of the Request Market Data dialog. For a complete
list of the properties in the contract structure, see the API Reference Guide.

‘ IContract is a TWS COM object that is created by the factory method
. createContract(). You MUST use the createContract() factory
A\ method to create the IContract object. Once created by a factory
method, a COM object is tied to a corresponding TWS COM object. If
you try to pass a COM object to another TWS COM object instance, you may
get unpredictable results.

Getting Started with the TWS ActiveX API 49

http://individuals.interactivebrokers.com/php/apiGuide/apiguide/activex/icontract.htm

Market Data
Chapter 8 - Requesting and Canceling Market Depth

ActiveX Events that Return Market Depth

There are two ActiveX events that return market depth: updateMktDepth() and
updateMktDepthL2(). The difference between them is that updateMktDepthL2() returns
LII market depth. Both events are triggered by the reqMktDepthEx() method in
digMainWnd.

The updateMktDepth() event, its parameters and the event handler in digMainWnd and are
shown below. You can see the data that is returned by looking at the the event’s parameters
in the tables.

updateMktDepth()

Sub updateMktDepth (ByVal id As Integer, ByVal position As Integer, ByVal
operation As Integer, ByVal side As Integer, ByVal price As Double, ByVal size
As Integer)

Parameter Description

id The ticker ID that was specified previously in the call to
reqMktDepth()

position Specifies the row ID of this market depth entry.

operation Identifies how this order should be applied to the market depth.

Valid values are::

e 0 = insert (insert this new order into the row
identified by 'position')-

J 1 = update (update the existing order in the row
identified by 'position')-

e 2 = delete (delete the existing order at the row
identified by 'position")

side The side of the book to which this order belongs. Valid values
are:
e 0 =ask
e 1 =bid
price The order price.
size The order size.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

updateMktDepth() Event Handler

Private Sub Twsl updateMktDepth (ByVal eventSender As System.Object,
ByVal eventArgs As AxTWSLib. DTwsEvents updateMktDepthEvent) Handles
Twsl.updateMktDepth

m_dlgMktDepth.updateMktDepth (eventArgs.id, eventArgs.position, " ",
eventArgs.operation, eventArgs.side, eventArgs.price, eventArgs.size)
End Sub

Getting Started with the TWS ActiveX API 50

Market Data
Chapter 8 - Requesting and Canceling Market Depth

The updateMktDepthL2() event, its parameters and the event handler in digMainWnd are
shown below. This method only applies to customers who have subscribed to LII market data
(NYSE’s Open Book and NASDAQ's Total View market data subscriptions). Again, the
parameters returned by this event correspond to the market depth data being returned from
TWS.

updateMktDepthL2

Sub updateMktDepthl2 (ByVal id As Integer, ByVal position As Integer, ByVal
marketMaker As String, ByVal operation As Integer, ByVal side As Integer, ByVal price
As Double, ByVal size As Integer)

Parameter Description

id The ticker ID that was specified previously in the call to
reqMktDepth()

position Specifies the row id of this market depth entry.

marketMaker Specifies the exchange hosting this order.

operation Identifies the how this order should be applied to the market

depth. Valid values are:

e 0 = insert (insert this new order into the row
identified by 'position')-

o 1 = update (update the existing order in the row
identified by 'position')-

e 2 = delete (delete the existing order at the row
identified by 'position')

side Identifies the side of the book that this order belongs to. Valid
values are:
. 0 = ask
. 1 = bid
price The order price.
size The order size.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

updateMktDepthL2 Event Handler

Private Sub Twsl updateMktDepthL2 (ByVal eventSender As System.Object,
_ByVal eventArgs As AXTWSLib. DTwsEvents updateMktDepthL2Event) Handles
Twsl.updateMktDepthL2
m_dlgMktDepth.updateMktDepth (eventArgs.id, eventArgs.position,
eventArgs.marketMaker, eventArgs.operation, eventArgs.side, .
eventArgs.price, eventArgs.size)
End Sub

Getting Started with the TWS ActiveX API 51

Market Data
Chapter 8 - Requesting and Canceling Market Depth

Canceling Market Depth

Cancel bkt Degpth. ..

When you click the Cancel Mkt Depth button, the Cancel Market Depth dialog appears. Yes,
this is yet another version of the same dialog saw when we requested market data and market
depth; the only difference is that when you cancel market depth, all the fields in the dialog are
grayed out except Ticker Id and Contract Id. Simply click OK to submit cancel market depth.

Let’s see what happens in the code when you do this.

When you click the Cancel Mkt Depth button, the cmdCancelMktDepth_Click button event
handler in digMainWnd runs.

Cancel Mkt Depth Button Event Handler

Private Sub cmdCancelMktDepth Click (ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdCancelMktDepth.Click
' Set the dialog state
m dlgOrder.init ((dlgOrder.Dlg Type.CANCEL MKT DEPTH DLG),
m contractInfo, m orderInfo, m underComp, Me)

m_dlgOrder.ShowDialog ()
If m dlgOrder.ok Then
Call Twsl.cancelMktDepth (m dlgOrder.orderId)
End If
End Sub

The cmdCancelMktDepth_Click button event handler does the following:

e Sets the state of the digOrder object by setting
dlgOrder.Dlg_Type.CANCEL_MKT_DEPTH_DLG. This initializes the Cancel Market Depth
dialog.

e Displays the Cancels Market Depth dialog.
e (Calls the ActiveX method cancelMktDepth() when the OK button is clicked.

The cancelMktDepth() Method

This method has a single parameter, id, which is the same ID that was specified in the
reqMktDepthEx() call for market depth. The cancelMktDepth() method is shown below.

cancelMktDepth()

| Sub cancelMktDepth (ByVal id As Integer) |

Next we’ll look at how the sample application handles another kind of data request, the
historical data request.

Getting Started with the TWS ActiveX API 52

Market Data
Chapter 9 - Requesting and Canceling Historical Data

Chapter 9 - Requesting and Canceling
Historical Data

This chapter describes how to request and cancel historical data in the sample application, and
the API methods and events behind the process. For requesting historical data, you need to
use the highlighted fields in the Request Historical Data dialog shown here:

= Request Historical Data

onlract Desciption ™S\ | Oider Descipiion
Contract Id 0 Action
Syrebcl &M Quaniity I
T

yoe STH T T —
Expiry

Lt/ Opd Price / [

Shike . Volatity
Fight [r— AualUnderPrice [T
Mudiipher — GoodfMleeTime [
Exchangs WrsE GoodTADae [~

Primay Exchangs [WYSE
| comboregs |

RSO |
Inchsde Expied [0
Secid Type —

Market Data
\j““‘ Geneiic Tick Tags [T00107 70010

|2
Market Depth Totorical Diata =
MacMaskst | EndDawTime [Zo7i0315085715
Exercise Options AT ——

Action 106 2) o BarSize Setling [1dsy
Quariiy h Wwhat to Show [TRADES

il Howhaoroln
Drate Fomat .
\inleuum J

Getting Started with the TWS ActiveX API 53

Market Data
Chapter 9 - Requesting and Canceling Historical Data

What Happens When I Click the Historical Data Button?

Hi=starical Data...

Once you connect to TWS using the ActiveX sample application, you request historical data by
clicking the Historical Data button, then entering information in the Ticker Description and
Historical Data fields in the Request Historical Data dialog and clicking OK. The historical data
you request is displayed in the Market and Historical Data text panel.

That’s a simple process from a user’s point of view. But what’s going on behind the scenes?
Historical Data Button Event Handler
Just like all the other buttons in the sample application, the Historical Data button has an

event handler associated with it. When you click the Historical Data button, the event

handler cmdReqHistoricalData_Click, defined in digMainWnd, runs. Here is what the code
for the event handler looks like:

Historical Data Button Event Handler

Private Sub cmdRegHistoricalData Click(ByVal eventSender As

System.Object, ByVal eventArgs As System.EventArgs) Handles :
cmdRegHistoricalData.Click

' Set the dialog state

m dlgOrder.init ((dlgOrder.Dlg Type.REQ HISTORICAL DATA),
m contractInfo, m orderInfo, m underComp, Me)

m_dlgOrder.ShowDialog ()
If m dlgOrder.ok Then

If m dlgOrder.whatToShow = "estimates" Or
m dlgOrder.whatToShow = "finstat" Or
m dlgOrder.whatToShow = "snapshot" Then

Call Twsl.regFundamentalData (m dlgOrder.orderId, m contractInfo,
m _dlgOrder.whatToShow)
Else

Call Twsl.regHistoricalDataEx(m_dlgOrder.orderId, _
m_contractInfo, m dlgOrder.histEndDateTime,
m_dlgOrder.histDuration, m dlgOrder.histBarSizeSetting, _
m_dlgOrder.whatToShow, m dlgOrder.useRTH,
m_dlgOrder. formatDate)

End If
End If
End Sub

cmdReqgHistoricalData_ Click does the following:

e Sets the state of the dlgOrder object by setting

dlgOrder.Dlg_Type.REQ_HISTORICAL_DATA_DLG. This initializes the Request Historical
Data dialog, yet another “version” of the dlgOrder object.

o Displays the Request Historical Data dialog.

Getting Started with the TWS ActiveX API 54

Market Data
Chapter 9 - Requesting and Canceling Historical Data

e If ESTIMATES, FINSTAT or SNAPSHOT are entered into the What To Show field in the
dialog, then the event handler calls the ActiveX method reqFundamentalData() when
the OK button is clicked.

e If anything other than ESTIMATES, FINSTAT or SNAPSHOT is entered into the What To
Show field, the event handler calls the ActiveX method reqHistoricalDataEx() when
the OK button is clicked.

v Don’t worry about the regFundamentalData() method for now. It has to
,:\ do with Reuters global fundamental data, and is outside the scope of our
present discussion.

The reqHistoricalDataEx() Method

When you click OK in the sample application to request historical data, the
reqHistoricalDataEx() method sends your request to TWS and, if all the entries are valid,
the requested data is returned by way of the historicalData() event. So the
reqHistoricalDataEx() method triggers this event in order to return historical data to the
sample application.

Now let's see which parameters are used to request historical data. The
reqHistoricalDataEx() method looks like this:

Sub regHistoricalDataEx (ByVal tickerId As Integer, ByVal contract As
TWSLib.IContract, ByVal endDateTime As String, ByVal duration As String,
ByVal barSize As String, ByVal whatToShow As String, ByVal useRTH As
Integer, ByVal formatDate As Integer)

As with the other ActiveX methods we’ve seen so far, the parameters used to request
historical data correspond to the fields you complete in the Request Historical Data dialog. The
parameters are:

Parameter Description

tickerId The Id for the request. Must be a unique value. When the data
is received, it will be identified by this Id. This is also used when
canceling the historical data request.

contract This object contains a description of the contract for which
historical data is being requested. The contract description is
defined by the fields you completed in the Ticker Description
section of the Request Historical Data dialog. By the way, this is
the same structure that is used to get market data and many
other trading tasks! For a complete list of the properties in the
contract structure, see the API Reference Guide.

endDateTime This is the end data and time of the historical data request and
corresponds to the field of the same name in the Historical Data
section of the Request Historical Data dialog.

Use the format yyyymmdd hh:mm:ss tmz, where the time zone
is allowed (optionally) after a space at the end.

Getting Started with the TWS ActiveX API 55

Market Data
Chapter 9 - Requesting and Canceling Historical Data

Parameter Description

durationStr This is the time span the request will cover, and is specified
using the format: <integer> <unit>, i.e., 1 D, where valid units
are S (seconds), D (days), W (weeks), M (months), and Y
(years) . If no unit is specified, seconds are used. Also, note
"years" is currently limited to one.

barSize This parameter specifies the size of the bars that will be
returned and corresponds to the field of the same name in the
Request Historical Data dialog. For a complete list of the valid
values for this parameter, see the regHistoricalDataEx topicin
the API Reference Guide.

whatToShow This specifies the type of data to show (trades, midpoints, bids,
ask, bid/ask, option implied volatility and historical volatility)
and corresponds to the field of the same name in the Request
Historical Data dialog.

useRTH This parameter determines whether to return all data available
during the requested time span (value = 0), or only data that
falls within regular trading hours (value = 1). It corresponds to
the Regular Trading Hours field in the dialog.

formatDate This is the end data and time of the historical data request and
corresponds to the Date Format field in the Request Historical
Data dialog. Valid values include 1, which returns dates
applying to bars in the format:
yyyymmdd<{space}{space}hh:mm:dd, or 2, which returns
dates as a long integer specifying the number of seconds since
1/1/1970 GMT.

ActiveX Events that Return Historical Data

There is one ActiveX event that return historical data: historicalData().This event is
triggered by the reqHistoricalDataEx() method in digMainWnd. The historicalData()
event, its parameters and the event handler in digMainWnd are shown below. You can see the
data that is returned by looking at the the event’s parameters in the tables.

historicalData()

Sub historicalData (ByVal reqglId As Integer, ByVal date As String, ByVal
open As Double, ByVal high As Double, ByVal low As Double, ByVal close
As Double, ByVal volume As Integer, ByVal barCount As Integer, ByVal
WAP As Double, ByVal hasGaps As Integer)

Parameter Description

reqld The ticker ID of the request to which this bar is responding.

date The date-time stamp of the start of the bar. The format is determined
by the regHistoricalData() formatDate parameter.

open The bar opening price.

high The high price during the time covered by the bar.

low The low price during the time covered by the bar.

close The bar closing price.

Getting Started with the TWS ActiveX API 56

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/reqhistoricaldataex.htm

Market Data
Chapter 9 - Requesting and Canceling Historical Data

Parameter Description

volume The volume during the time covered by the bar.
WAP The weighted average price during the time covered by the bar.
hasGaps Identifies whether or not there are gaps in the data.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

historicalData Event Handler

Private Sub Twsl historicalData (ByVal eventSender As System.Object, ByVal
eventArgs As AxTWSLib. DTwsEvents historicalDataEvent) Handles _
Twsl.historicalData

Dim mktDataStr As String

& eventArgs.open & " high=" & eventArgs.high &
" low=" & eventArgs.low & " close=" & eventArgs.close & " volume=" &
eventArgs.volume &
" barCount=" & eventArgs.barCount & " WAP=" & eventArgs.wAP
If (eventArgs.hasGaps <> 0) Then
mktDataStr = mktDataStr & " has gaps"
Else
mktDataStr = mktDataStr & " no gaps"
End If
Call m utils.addListItem(Utils.List Types.MKT DATA, mktDataStr)

' move into view
lstMktData.TopIndex = lstMktData.Items.Count - 1
End Sub

mktDataStr = "id=" & eventArgs.reqld & " date=" & eventArgs.date & " open=" _

Canceling Historical Data

Cancel Hist. Data...

When you click the Cancel Hist. Data button, the Cancel Historical Data dialog appears. Yes,
this is yet another version of the same dialog saw when we requested market data and market
depth; the only difference is that when you cancel historical data, all the fields in the dialog
are grayed out except Ticker Id and Contract Id. Simply click OK to submit historical data.

Now turn the page to see what happens in the code when you do this.

Getting Started with the TWS ActiveX API

57

Market Data
Chapter 9 - Requesting and Canceling Historical Data

When you click the Cancel Hist. Data button, the cmdCancelHistData_Click button event
handler in digMainWnd runs.

Cancel Hist. Data Button Event Handler

Private Sub cmdCancelHistData Click (ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdCancelHistData.Click
' Set the dialog state
m dlgOrder.init ((dlgOrder.Dlg Type.CANCEL HIST DATA DLG),
m contractInfo, m orderInfo, m underComp, Me)

m dlgOrder.ShowDialog ()
If m dlgOrder.ok Then
If m dlgOrder.whatToShow = "estimates" Or
m dlgOrder.whatToShow = "finstat" Or _
m dlgOrder.whatToShow = "snapshot" Then
Call Twsl.cancelFundamentalData (m dlgOrder.orderId)
Else
Call Twsl.cancelHistoricalData(m_dlgOrder.orderId)
End If

End If
End Sub

The cmdCancelHistData_Click button event handler does the following:

e Sets the state of the digOrder object by setting
dlgOrder.DIlg_Type.CANCEL_HIST_DATA_DLG. This initializes the Cancel Historical Data
dialog.

¢ Displays the Cancel Historical Data dialog.

e If Reuters Fundamental Data was requested, calls the cancelFundamentalData()
method when the OK button is clicked.

e (Calls the ActiveX method cancelHistoricalData() when the OK button is clicked.
The cancelHistoricalData() Method
This method has a single parameter, tickerld, which is the same Ticker ID that was specified in
the reqHistoricalDataEx() call for historical data. The cancelHistoricalData() method is

shown below.

cancelHistoricalData()

| Sub cancelHistoricalData (ByVal tickerId As Integer) |

There are some limitations in the way TWS API handles historical
data requests. Specifically, requesting the same historical data in a
' N\ short period of time can cause extra load on the backend and cause
® | pacing violations. For more information on these pacing violations,
see Historical Data Limitations in the API Reference Guide.

In the next section we’ll look at how the sample application handles another kind of data
request, the real-time bars request.

Getting Started with the TWS ActiveX API 58

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/historical_data_limitations.htm

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars

Chapter 10 - Requesting and Canceling Real
Time Bars

This chapter discusses the methods for requesting and canceling real time bars. Real time bars
allow you to get a summary of real-time market data every five seconds, including the
opening and closing price, and the high and the low within that five-second period (using TWS
charting terminology, we call these five-second periods "bars"). You can also get data showing
trades, midpoints, bids or asks. We show you the methods and parameters behind the Sample
GUI, and how they call the methods in the TWS Java API.

For requesting real time bars, you need to use the fields circled in the Request Real Time Bars
dialog shown below.

= Request Real Time Bars

r/‘E’ww D atiiplice "\,' Dirder Dasetiplion

Contacl |d 0 Aichion
Syl (aTuT[n} Dusanlity o
1
ype STE T T —
Espiy

Lmt/OptPrice/ [
Stk i Wiolahiity
Right [r— fulnder Prica [T
Mudliphet - GoodAlles Time [
Excharge SHMART Good TlDale [~

Primary Exchange [

Cumency lr | |
LocalSymbol [2 | __#goPuams |
Inchde Expied [~
Sec id Typa [

Market Data
Secld Geneiic Tick Tags 10010170010
58 =

Market Diepih Historical Data
M Makat I L oy —
Deoth Rows

Everciza Ok Query Duration
Aetion [1 o6 2) I —— BarSizeSetling [,
Quarkiy [| whatoShow [TRADES

St d L] I Ew&ﬂ-:tbﬂi'lw 1
Diate Format l—
Shle 1 o 2]

I]k| I:ant:al|

Getting Started with the TWS ActiveX API 59

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars

What Happens When I Click the Real Time Bars Button?

Real Time Barz

You request real time bars by, well, clicking the Real Time Bars button, then entering
information in the Ticker Description and a couple of the Historical Data fields in the Request
Real Time Bars dialog and clicking OK. The data you request is displayed in the Market and
Historical Data text panel.

Once again, this is a simple process from a user’s point of view. Let’s take a look at what’s
happening in the code when you request real time bars.

Real Time Bars Button Event Handler

Just like all the other buttons in the sample application, the Real Time Bars button has an
event handler associated with it. When you click the button, the event handler
cmdReqRealTimeBars_Click, defined in digMainWnd, runs. Here is what the code for the
event handler looks like:

Real Time Bars Button Event Handler

Private Sub cmdRegRealTimeBars Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles cmdRegRealTimeBars.Click
' Set the dialog state
m dlgOrder.init ((dlgOrder.Dlg Type.REQ REAL TIME BARS DLG),
m contractInfo, m orderInfo, m underComp, Me)

m dlgOrder.ShowDialog ()

If m dlgOrder.ok Then

Call Twsl.reqRealTimeBarsEx (m_dlgOrder.orderId, m contractInfo, _
5, m_dlgOrder.whatToShow, m dlgOrder.useRTH)

End If

End Sub

cmdReqRealTimeBars_Click does the following:

e Sets the state of the dlgOrder object by setting
dlgOrder.DIlg_Type.REQ_REAL_TIME_BARS_DLG. This initializes the Request Real Time
Bars dialog (yes, this is yet another version of the dlgOrder object).

o Displays the Request Real Time Barsdialog.
e Calls the ActiveX method reqRealTimeBarsEx() when the OK button is clicked.

Getting Started with the TWS ActiveX API 60

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars

The reqRealTimeBarsEx() Method

When you click OK in the sample application to request real time bars, the
reqRealTimeBarsEx() method sends your request to TWS and, if all the entries are valid,
the requested data is returned by way of the realTimeBar() event. So the
reqRealTimeBarsEx() method triggers this event in order to return real time bars to the
sample application.

Now let's see which parameters are used to request real time bars. The
reqRealTimeBarsEx() method looks like this:

Sub regRealTimeBarsEx (ByVal tickerId As Integer, ByVal contract As
TWSLib.IContract, ByVal barSize As Integer, ByVal whatToShow As
String, ByVal useRTH As Integer)

As with the other ActiveX methods we’ve seen so far, the parameters used to request real
time bars correspond to the fields you complete in the Request Real Time Bars dialog. The
fields used to request real time bars are some of the same fields you used to request historical
data.

Parameter Description

tickerId The Id for the request. Must be a unique value. When the data is
received, it will be identified by this Id. This is also used when
canceling the historical data request.

contract This object contains a description of the contract for which real time

bars are being requested. The contract description is defined by the

fields you completed in the Ticker Description section of the Request

Real Time Bars dialog. And yes, this is the same structure that is used

to get market data and many other trading tasks. For a complete list

o(; th properties in the contract structure, see the API Reference
uide.

barSize This parameter specifies the size of the bars that will be returned and
corresponds to the field of the same name in the Historical Data
section of the Request Real Time Bars dialog.

whatToShow This specifies the type of data to show (trades, bid, ask, or
midpoints), and corresponds to the field of the same name in the
Historical Data section of the Request Real Time Bars dialog.

useRTH This parameter determines whether to return all data available during
the requested time span (value = 0), or only data that falls within
regular trading hours (the value = 1). It corresponds to the Regular
Trading Hours field in the Historical Data section of the Request Real
Time Bars dialog.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

Getting Started with the TWS ActiveX API 61

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars

ActiveX Events that Return Real Time Bars

There is one ActiveX event that return historical data: realtimeBar().This event is triggered
by the reqRealTimeBarsEx() method in dlgMainWnd.

The realtimeBar() event, its parameters and the event handler in digMainWnd are shown
below. You can see the data that is returned by looking at the the event’s parameters in the
tables.

realtimeBar()

Sub realtimeBar (ByVal tickerId As Integer, ByVal time As Integer,
ByVal open As Double, ByVal high As Double, ByVal low As Double, ByVal
close As Double, ByVal volume As Integer, ByVal WAP As Double, ByVal
Count As Integer)

Parameter Description

reqld The ticker Id of the request to which this bar is responding.

time The date-time stamp of the start of the bar. The format is determined
by the regHistoricalData() formatDate parameter.

open The bar opening price.

high The high price during the time covered by the bar.

low The low price during the time covered by the bar.

close The bar closing price.

volume The volume during the time covered by the bar.

wap The weighted average price during the time covered by the bar.

count When TRADES historical data is returned, represents the number of
trades that occurred during the time period the bar covers.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

realtimeBar() Event Handler

Private Sub Twsl realtimeBar (ByVal eventSender As Object, ByVal eventArgs As
AxTWSLib. DTwsEvents realtimeBarEvent) Handles Twsl.realtimeBar

Dim mktDataStr As String

mktDataStr = "id=" & eventArgs.tickerId & " time=" & eventArgs.time &
" open=" & eventArgs.open & " high=" & eventArgs.high &
" low=" & eventArgs.low & " close=" & eventArgs.close & " volume=" &

eventArgs.volume & " WAP=" & eventArgs.wAP & " count=" & eventArgs.coant
Call m utils.addListItem(Utils.List Types.MKT DATA, mktDataStr)
' move into view

lstMktData.TopIndex = lstMktData.Items.Count - 1
End Sub

Getting Started with the TWS ActiveX API 62

Market Data
Chapter 10 - Requesting and Canceling Real Time Bars

Canceling Real Time Bars

Dizconnect

When you click the Can Real Time Bars button, the cmdCancelRealTimeBars_Click event
handler in digMainWnd runs.

Canc Real Time Bars Button Event Handler

Private Sub cmdCancelRealTimeBars Click (ByVal eventSender As Object, ByVal _
eventArgs As System.EventArgs) Handles cmdCancelRealTimeBars.Click
' Set the dialog state
m dlgOrder.init ((dlgOrder.Dlg Type.CANCEL REAL TIME BARS DLG),
m contractInfo, m orderInfo, m underComp, Me)

m dlgOrder.ShowDialog ()
If m dlgOrder.ok Then
Call Twsl.cancelRealTimeBars (m_dlgOrder.orderId)
End If
End Sub

The cmdCancelRealTimeBars_Click button event handler does the following:

e Sets the state of the digOrder object by setting
dlgOrder.DIlg_Type.CANCEL_REAL_TIME_BARS_DLG. This initializes the Cancel Real
Time Bars dialog.

¢ Displays the Cancel Real Time Bars dialog.

e (alls the ActiveX method cancelRealTimeBars() when the OK button is clicked.

The cancelRealTimeBars() Method

This method has a single parameter, tickerId, which is the same Ticker ID that was specified in
the reqRealTimeBarsEx() call for real time bars. The cancelRealTimeBars() method is
shown below.

cancelRealTimeBars()

| Sub cancelRealTimeBars (int tickerId)

As you can see from the similarity in the code for the trading tasks you’ve looked at so far,
we've tried to make the ActiveX API methods and events as constent and easy to understand
as possible.

The next chapter takes a looks at how to run a market scanner using the ActiveX API sample
application.

Getting Started with the TWS ActiveX API 63

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

Chapter 11 - Subscribing to and Canceling
Market Scanner Subscriptions

This chapter describes the methods and events used for requesting market scanner
parameters, subscribing to a market scanner, and canceling a subscription to a market
scanner in the ActiveX sample application. When you click the Market Scanner button in the
sample application, the Market Scanner dialog opens, instead of the standard Request/Cancel
dialog we've seen for the other buttons on the sample application.

. Market Scanner

Meszage |d
Id ||:|

Subszcrptian Infa

MHumber of Rows 110

Instrument ISTK

Location Code |STK.LS

Scan Code |TOP_PERC_GAIN
Above Price |3

Below Price |

Above Wolume |EI

Average Option Yolume Above |EI

Market Cap Above 100000000

Market Cap Below

Maoody B ating Above

koody B ating B elow
5 and P Rating Above

M aturity Date dbove

M aturity D ate Below

Coupon Rate dbove

|
|
|
|
5 and P Rating Below |
|
|
|
|

Coupon Hate Below

Exrclude Corvertibles 0

Scanher Setting Pairs |Anual true

Stock Type Filker |

Request Parameters Subszcribe | Cancel Subscription

Getting Started with the TWS ActiveX API 64

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

What Happens When I Click the Market Scanner Button?

Market Scanner...

You can do two things related to market scanners in the ActiveX sample application:

e You can subscribe to a market scanner.

e You can request scanner parameters via an XML document, which is displayed in the
sample application. This XML document describes the valid parameters that a scanner
subscription can have.

To perform either of these tasks, you click the Market Scanner button, then enter
information in the Market Scanner dialog and click the appropriate button. For a market scan,
fill in as many of the fields in the dialog as you need (especially the Scan Code!), then click the
Subscribe button. To request available scan parameters, click the Request Parameters
button.

Market scan results are displayed in the Market and Historical Data text panel as shown below.
Market scanner parameters (the XML file) are displayed in the TWS Server Responses text
panel.

Market and Historical Data

id=0 rank=2 conld=37311736 symbol=L%"Y secType=STK currency=UZD localzymbal=L%" marketMame=| »
id=0 rank=3 conld=4067 3887 symbol=F=Y'S secType=5TH currency=U=D localSyimbol=FSY'S matketMatm
id=0 rank=4 conld=273915 symbal=ROCK secType=STH currency=UZD localzymbol=ROCK markethame=
id=0 rank=5 conld=34770993 symbol=EBHI zecType=5TH currency=USD localSymbol=EBHI marketMame=|
id=0 rank=6 conld=30212897 symbol=J&Y secType=STH currency=UZD localSymbol=J2% marketMame=.
id=0 rank=¥ conld=273165 symbal=PLABR zecType=STH currency=UZD local=ymbal=PLAB marketMame=F
id=0 rank=5 conld=48956053 symbol=MN=PH secType=5THK currency=UZD localSymbol=R=PH markethame
id=0 rank=9 conld=6283 =ymbol=C%D zecType=5TK currency=UD localSymbol=CYD marketflame=CYD-
id=0 enid

id=1 time=1218224150 open=19 .92 high=19.92 lovw=19 91 cloze=19.92 volume=1E6VwWAP=19 92 count=2

id=1 time=1215224155 open=19 92 high=19.92 low=1991 close=19.92 volume=43 VWAP=19 92 court=12
id=1 time=1218224160 open=19 92 high=19.93 lovw=13 91 close=19.92 volume=112vwAP=12 92 count=4¢ 3

£ ¥

This is a fairly simple process from a user’s point of view. There’s more going on behind the
scenes, however, so let’s take a look.

Getting Started with the TWS ActiveX API 65

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

Market Scanner Button Event Handler

Just like all the other buttons in the sample application, the Market Scanner button has an
event handler associated with it. When you click the button, the event handler
cmdScanner_Click, defined in dlgMainWnd, runs. Here is what the code for the event
handler looks like:

Market Scanner Button Event Handler

Private Sub cmdScanner Click (ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles cmdScanner.Click

m dlgScanner.ShowDialog ()
End Sub

cmdScanner_Click really does only one thing: it displays the Market Scanner dialog, or as its
known in the code, dlgScanner.

Market Scanner Dialog

The process of filling in the fields of the Market Scanner dialog is pretty straightforward.
However, the code for the Market Scanner dialog (dlgScanner), does a few things in which
we're interested:

e Runs the cmdRequestParameters_click event when you click the Request
Parameters button.

e Runs the cmdSubscribe_click event when you click the Subscribe button.

e Runs the cmdCancelSubscription_click event when you click the Cancel
Subscription button. (We'll learn more about how to cancel a market scanner
subscription later in this chapter.)

The cmdRequestParameters_click event calls the reqScannerParameters() method
when you click the Request Parameters button.

The cmdSubscribe_click event calls two methods:

e populateSubscription() - This is a private method that sets the values of the
properties that make up the scanner subscription. These properties correspond to the
fields in the Market Scanner dialog, of course. We'll see in a few minutes that these
properties make up the subscription object, which is one of the parameters of the
scannerSubscriptionEx() method.

e scannerSubscriptionEx() - This method tells TWS to start sending the scan data to
the API sample application.

Getting Started with the TWS ActiveX API 66

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

Requesting Scanner Parameters

As we noted earlier, when you click the Request Parameters button in the Market Scanner
dialog, the button event handler calls the reqScannerParameters() method, which requests
an XML string that describes all possible market scans and their available parameters.

| Sub regScannerParameters () |

As you can see, this method has no parameters. The XML document containing the scanner
parameters is returned from TWS by the scannerParameters() event, which is shown
below.

| scannerParameters (ByVal xml As String)

The scannerParameters() event has a single parameter, xm/, which is the XML document
that contains the scanner parameters. This is the XML document that is displayed in the TWS
Server Responses text panel of the sample application.

Subscribing to a Market Scanner

When you click the Subscribe button in the Market Scanner dialog, the button event handler
calls the reqScannerSubscriptionEx() method, which is shown below,

Sub regScannerSubscriptionEx (ByVal tickerId As Integer, ByVal subscription
As TWSLib.IScannerSubscription)

Parameter Description

tickerId The ticker id. Must be a unique value. When the market data
returns, it will be identified by this tag. This is also used when
canceling the market data.

subscription This object contains the scanner subscription parameters.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

As you can see from the table above, this method has two parameters. The tickerId parameter
corresponds to the Ticker ID field in the dialog. The subscription object (IScannerSubscription
TWS COM object) contains the properties that correspond to the fields in the Market Scanner
dialog, such as Instrument and Scan Code. For a complete list of the properties in the
subscription structure, see the API Reference Guide.

-‘ IScannerSubscription is a TWS COM object that is created by the
factory method createScannerSubscription(). You MUST use the
createScannerSubscription() factory method to create the
IScannerSubscription object. Once created by a factory method, a

COM object is tied to a corresponding TWS COM object. If you try to pass a

COM object to another TWS COM object instance, you may get unpredictable

results.

Getting Started with the TWS ActiveX API 67

http://individuals.interactivebrokers.com/php/apiGuide/apiguide/activex/iscannersubscription.htm

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

The market scan results are returned by the scannerDataEx() event:.

Sub scannerDataEx (ByVal reqId As Integer, ByVal rank As Integer, ByVal
contractDetails As TWSLib.IContractDetails, ByVal distance As String,
ByVal benchmark As String, ByVal projection As String, ByVal legsStr As
String)

You can see all the parameters for this event in the scannerDataEx() topic in the API
Reference Guide.

The event handler for scannerDataEx() is shown below:

scannerDataEx() Event Handler

Private Sub Twsl scannerDataEx (ByVal eventSender As System.Object, ByVal
eventArgs As AxTWSLib. DTwsEvents scannerDataExEvent) Handles wsl.scannerDataEx
Dim mktDataStr As String

Dim contractDetails As TWSLib.IContractDetails
contractDetails = eventArgs.contractDetails

Dim contract As TWSLib.IContract

contract = contractDetails.summary

mktDataStr = "id=" & eventArgs.reqIld & " rank=" & eventArgs.rank & _
" conlId=" & contract.conId & " symbol=" & contract.symbol &
" secType=" & contract.secType & " currency=" & contract.currency & _
" localSymbol=" & contract.localSymbol &

" marketName=" & contractDetails.marketName &

" tradingClass=" & contractDetails.tradingClass &

" distance=" eventArgs.distance & " benchmark=" & eventArgs.benchmark &
" projection=" & eventArgs.projection & " legsStr=" & eventArgs.legsStr

Call m utils.addListItem(Utils.List Types.MKT DATA, mktDataStr)

' move into view
lstMktData.TopIndex = lstMktData.Items.Count - 1
End Sub

The scannerDataEnd() Event

There is one additional event used in conjunction with scanner subscriptions:
scannerDataEnd().

| Sub scannerData (ByVal regld As Integer

Getting Started with the TWS ActiveX API 68

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/scannerdataex.htm

Market Data
Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions

This event is called after a full snapshot of a scanner window has been received and functions
as a sort of end tag. It helps define the end of one scanner snapshot and the beginning of the
next. The scannerDataEnd() event handler is shown below.

scannerDataEnd() Event Handler

Private Sub Twsl scannerDataEnd(ByVal sender As Object, ByVal eventArgs As
AxTWSLib. DTwsEvents scannerDataEndEvent) Handles Twsl.scannerDataEnd
Dim str As String

str = "id=" & eventArgs.reqld & " end "
Call m utils.addListItem(Utils.List Types.MKT DATA, str)
' move into view

lstMktData.TopIndex = lstMktData.Items.Count - 1
End Sub

Cancel a Market Scanner Subscription

To cancel a market scanner subscription in the ActiveX sample application, first click Market
Scanner button, then click the Cancel Subscription button in the Market Scanner dialog.
When you click this button, the cmdCancelSubscription_Click event runs.

Cancel Subscription Button Event Handler

Private Sub cmdCancelSubscription Click(ByVal eventSender As
System.Object, ByVal eventArgs As System.EventArgs) Handles _
cmdCancelSubscription.Click
Call populateSubscription ()
Call m mainWnd.cancelScannerSubscription(m_id)
Hide ()
End Sub

The cmdCancelSubscription_Click calls the cancelScannerSubscription() event, shown
below, which cancels the market scanner subscrription.

| Sub cancelScannerSubscription (ByVal tickerId As Integer) |

Getting Started with the TWS ActiveX API 69

Market Data
Chapter 12: Requesting Contract Data

Chapter 12: Requesting Contract Data

This chapter shows you how to request contract data, including details such as the local
symbol, conid, trading class, valid order types, and exchanges. We'll walk you through
everything that happens from the time you click the Req Contract Data button in the sample
application, to the moment you're taking in the fascinating details of your desired contract. It
all happens fast, so pay attention! To request contract data in the sample application, you
need to fill in the fields in the Request Contract Details dialog shown below.

To request contract data using the ActiveX sample application, you'll need to enter data in the
fields circled in the Request Contract Details dialog pictured below. The Request Contract
Details dialog appears when you click the Req Contract Data button.

= Request Contract Details

B

onirach Dasenphon "\ Oider Drezciplion

Conhrac |d 0 Aiction
Syl (TuTa o} Dusanlily [0
T

yoe STE Otde Type T —
Espiy
Lmt/OptPrice / [5——

Stk i | Vilatibly
Right — dueelnder Frics [
bbualiplies N GoodAfter Time [
Exchange SHMART GoedTdDate [~

Primasy Exchange [

Curmaricy W | |
LocalSymbol [| _AgoPuans |
Inchade Expied iui
Sec bd Typs [

L_ Secld li ::i?r:: Tags [100707,104.10
7 r
Maiket Deplh Historical Data
gﬂ;ﬂ I LAV o ey e—
Exerciss Dptions Quecy Duration

Action 1o 2] i Blar Size Sedling

Quartiy i What o Shiow

bl L] i Ew&ﬂ-krﬁu
[ate Format l—
Shle 1 o6 2]

I]k| Dmr.al|

Getting Started with the TWS ActiveX API 70

Market Data

Chapter 12: Requesting Contract Data

What Happens When I Click the Req Contract Data Button?

Req Contract Data...

In the ActiveX sample application, you request contract details by clicking the Req Contract
Data button, then entering an underlying and other information in the Ticker Description fields
of the Request Contract Details dialog. When you click OK, the contract data you requested

are displayed in the TWS Server Responses text panel, as shown here:

WS Server Responses

---- Contract Details Begin ----
Cortract:
conld = 3312590
symbol = YHOO
zecType = STH
expiry =
strike =0
right =
muttiplier =
exchange = SMART
currency = UsD
lncalZymbal = YHOO
Detail=:
marketMame = hhS
tradinuClass = NMS
£ >

Let’s take a look at the code behind this simple process.

Req Contract Data Button Event Handler

When you click the Req Contract Data button, cmdReqContractData_Click, the event

handler in digMainWnd runs. Here is what that event handler looks like:

Req Contract Data Button Event Handler

ByVal eventArgs As System.EventArgs) Handles cmdRegContractData.Click
' Set the dialog state
m dlgOrder.init ((dlgOrder.Dlg Type.REQ CONTRACT DETAILS DLG),
m contractInfo, m orderInfo, m underComp, Me)

m dlgOrder.ShowDialog ()
If m dlgOrder.ok Then
Twsl.reqContractDetailsEx (m_dlgOrder.orderlId,
m_contractInfo)
End If
End Sub

Private Sub cmdRegContractData Click(ByVal eventSender As System.Object,

Getting Started with the TWS ActiveX API 71

Market Data
Chapter 12: Requesting Contract Data

cmdReqContractData_Click does the following:

e Sets the state of the dlgOrder object by setting
dlgOrder.DIlg_Type.REQ_CONTRACT_DETAILS_DLG. This initializes the Request
Contract Details dialog. (This is another instance of our old friend, the digOrder object).

o Displays the Request Contract Details.
e Calls the ActiveX method reqContractDetailsEx() when the OK button is clicked.

The reqContractDetailsEx() Method

Your contract data request is passed to TWS via the reqContractDetailsEx() method.

Sub regContractDetailsEx (ByVal reqlId As Integer, ByVal contract As
TWSLib.IContract)

This method contains two parameters, reqgld and contract. reqld passes the ID of the data
request to TWS and ensures that responses are matched to requests if several requests are in
process. If you recall from earlier chapters, the contract parameter (IContract TWS COM
object) contains all the attributes used to describe the requested contract, which in this case
means all the values you entered in the fields in the Ticker Description section of the Request
Contract Details dialog.

IContract is a TWS COM object that is created by the factory method

createContract(). You MUST use the createContract() factory

method to create the IContract object. Once created by a factory

method, a COM object is tied to a corresponding TWS COM object. If
you try to pass a COM object to another TWS COM object instance, you may
get unpredictable results.

The contractDetailsEx() Event

The actual contract data is returned from TWS via the contractDetailsEx() event.

Sub contractDetailsEx (ByVal reqlId As integer, ByVal contractDetails As
TWSLib.IContractDetails)

This event also contains two parameters, reqld and contractDetails. Just as in the method that
requested the contract data, the reqID parameter here contains the ID of the data request to
ensure matching with the correct request. The contractDetails parameter is a structure that
contains all the attributes used to describe the requested contract, including the valid order
types and exchanges on which the requested contract can be traded.

For a complete list of the properties in the contractDetails structure, see the API Reference
Guide.

Getting Started with the TWS ActiveX API 72

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/icontractdetails.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/icontractdetails.htm

Market Data
Chapter 12: Requesting Contract Data

The contractDetailsEnd() Event

There is one additional contract data event used in the ActiveX API, the
contractDetailsEnd() event. This event, which has a single parameter, reqgld, is called once
all contract details for a given request are received. This helps to define the end of an option
chain.

| Sub contractDetailsend(ByVal reqld As Integer) |

The event handler for contractDetailsEnd() displays the end marker for the contract
information displayed in the TWS Server Responses text panel of the sample application main
window.

This concludes our discussion of market and contract data-related trading tasks. The next
section describes how to place orders and exercise options using the sample application and
ActiveX API.

Getting Started with the TWS ActiveX API 73

Market Data
Chapter 12: Requesting Contract Data

Getting Started with the TWS ActiveX API 74

Orders and Executions

This section describes how the ActiveX API sample application handles orders. We'll show you
the methods, events and parameters behind such trading tasks as placing and canceling
orders, exercising opions and viewing open orders and executions.

Here's what you'll find in this section:

e Chapter 13 - Placing an Order

e Chapter 14 - Exercising Options

e Chapter 15 - Using Extended Order Attributes
e Chapter 16 - Requesting Open Orders

e Chapter 17 - Requesting Executions

Getting Started with the TWS ActiveX API 75

Orders and Executions
Chapter 13: Placing and Canceling an Order

Chapter 13: Placing and Canceling an Order

In this chapter, we describe what happens when you place and cancel an order. When you
click the Place Order button, another version of the standard Request/Cancel dialog (the
dlgOrder object) opens. To place an order, you fill in the fields circled in the dialog as shown
below.

=, Place Order
N — N
Coniract Desciiption rffrdn Drescaiplion =
Contiact [d ||:| Aection BLRY
Symbel [aaa sty foo
T
ype [5TE N T
Expiry |
Lok Dipt Price £ lﬂi
Shike ||:| Wiolahilihy
Riight Ii AuzeUnder Prica [
Miudtiphe | Good Afled Time li
Exchange SHMART Good TMDse [
Primary Exchangs | k ;
| Combolegs
Cuimancy e
locdsmbol [DetaNeursl | AlgoPuams |
Inchude Expied g
Sec id Type |
Market Data
Secld [Gernsiic Tick Tags -
\. Alee
Maiket Depth Histoncal Data
Iiae Markst ; l—
e | Erd Dhzhe T ime
Earciss Dnki Query Duration r

Acbon(lee2l [|| BaSeeSemng [T,
Dusrity T T —
renes sl I B[Rl or 1
Diate Fomat .
Stule (1 or 2]

ok | Carcel |

Getting Started with the TWS ActiveX API 76

Orders and Executions
Chapter 13: Placing and Canceling an Order

What Happens When I Place an Order?

Let's take a look at what happens when you place an order. First we’ll look at how a typical
user would place an order using the ActiveX sample application, then we’ll look at the code
behind that process.

Place Order ...

When you click the Place Order button, the Place Order dialog appears. As we mentioned
earlier, this is yet another version of the digOrder object. You enter the contract information in
the Ticker Description fields, enter the order information in the Order Description fields, then
click the OK button to place the order. Your order information is displayed in the TWS Server
Responses text panel on the sample application window.

There are additional order options available in the ActiveX sample
application that are supported by the API. You can enter Delta
Neutral information, create a combo order or enter Algo
parameters for IBAIgo orders. These options are described later in
this chapter.

That's pretty straightforward. Now let’s see how the code works during this process.

Place Order Button Event Handler

When you click the Place Order button, two things happen:

e The cmdPlaceOrder_Click event handler runs, and calls the private method
placeOrderImpli().

e The placeOrderImpl() method runs.
placeOrderImpl(), shown on the next page, does the following:

e Sets the state of the digOrder object by setting digOrder.DIg_Type.PLACE_ORDER_DLG.
This initializes the Place Order dialog.
e Displays the Place Order dialog.

e Calls the ActiveX method placeOrderEx() when the OK button is clicked.

Getting Started with the TWS ActiveX API 77

Orders and Executions
Chapter 13: Placing and Canceling an Order

placeOrderImpl() Method

Private Sub placeOrderImpl (ByVal whatIf As Boolean)

' Set the dialog state
m dlgOrder.init ((dlgOrder.Dlg Type.PLACE ORDER DLG),
m contractInfo, m orderInfo, m underComp, Me)

m dlgOrder.orderId = m nextOrderId
m_dlgOrder.ShowDialog ()
If m dlgOrder.ok Then
Dim savedWhatIf As Boolean
savedWhatIf = m orderInfo.whatIf ()
m orderInfo.whatIf = whatIf
Call Twsl.placeOrderEx(m_dlgOrder.orderId, m contractInfo, _
m_orderInfo)
m orderInfo.whatIf = savedWhatIf
End If
End Sub

But wait, that’s not all that happens! After you enter the contract and order information in the
Place Order dialog and click the OK button, the information you entered into the Ticker
Description fields are stored in the m_contractinfo variable, and the information you entered
into the Order Description fields are stored in the m_orderinfo variable.

What are these variables? Well, in digMainWnd, these are set to the TWS COM objects
TWSLib.IContract and TWSLib.IOrder, respectively. And these objects happen to be
parameters of the placeOrderEx() method. So, all the contract and order information
required to place your order are passed to TWS by placeOrderEx() in these two parameters.

The placeOrderEx() Method

This is the method that passes your contract and order information to TWS.

Sub placeOrderEx (ByVal orderId As Integer, ByVal contract As
TWSLib.IContract, ByVal order As TWSLib.IOrder)

We mentioned above that the objects TWSLib.IContract and TWSLib.IOrder are actually
parameters of placeOrderEx(). These objects pass your contract and order information to
TWS. Here's the list of all of the method’s parameters:

Parameter Description

orderld The order Id. You must specify a unique value. When the order
status returns, it will be identified by this tag. This tag is also
used when canceling the order.

contract This object contains attributes used to describe the contract.

order This object contains the details of the order.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

Getting Started with the TWS ActiveX API 78

Orders and Executions
Chapter 13: Placing and Canceling an Order

IContract is a TWS COM object that is created by the factory method
createContract(). IOrder is a TWS COM object that is created by the
factory method createOrder(). You MUST use the createContract()
and createOrder() factory methods to create these COM objects.

Once created by a factory method, a COM object is tied to a corresponding
TWS COM object. If you try to pass a COM object to another TWS COM object
instance, you may get unpredictable results.

For a complete list of the properties in the order and contract structures, see the API
Reference Guide.

The orderStatus() Event

Once the order has been placed, and assuming there are no errors in the order, the ActiveX
event orderStatus() returns the current status of the order from TWS.

orderStatus() Event

Sub orderStatus (ByVal id As Integer, ByVal status As String, ByVal filled
As Integer, ByVal remaining As Integer, ByVal avgFillPrice As Double, ByVal
permId As Integer, ByVal parentId As Integer, ByVal lastFillPrice Double,
ByVal clientId As Integer, ByVal whyHeld As String)

The status parameter returns the status of your order and the sample application displays that
information in the TWS Server Responses text panel. The possible values for the status
parameter, and therefore, the possible order statuses, are:

PendingSubmit - you have transmitted the order, but have not yet received
confirmation that it has been accepted by the order destination.

PendingCancel - you have sent a request to cancel the order but have not yet received
cancel confirmation from the order destination. At this point, your order is not
confirmed canceled. You may still receive an execution while your cancellation request
is pending.

Note: PendingSubmit and PendingCancel order statuses are not sent by the system and
should be explicitly set by the API developer when an order is canceled.

PreSubmitted - a simulated order type has been accepted by the system and that this
order has yet to be elected. The order is held in the system until the election criteria are
met. At that time the order is transmitted to the order destination as specified.

Submitted - your order has been accepted at the order destination and is working.

Cancelled - the balance of your order has been confirmed canceled by the system. This
could occur unexpectedly when the destination has rejected your order.

Filled - the order has been completely filled.

Inactive - the order has been accepted by the system (simulated orders) or an
exchange (native orders) but that currently the order is inactive due to sytem,
exchange or other issues.

ApiPending - the order has been reported to TWS by the API using reqAllOpenOrders()
or reqOpenOrders().

ApiCancelled - the order reported by the API has been cancelled.

Getting Started with the TWS ActiveX API 79

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/activex_com_objects.htm
http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/activex_com_objects.htm

Orders and Executions
Chapter 13: Placing and Canceling an Order

The rest of the details of your order are returned by the other parameters of the
orderStatus() event. For complete descriptions of these parameters, see the API Reference

Guide.

Canceling an Order

Cancel Order ...

To cancel an order, click the Cancel Order button on the main sample window, then click the
OK button in the Place Order dialog. When you cancel your order, make sure the Ticker ID is
the same as the orderID for your order (you can find this in the order status display in the
TWS Server Responses text panel).

Let’s take a look at the code behind this operation.

When you click the Cancel Order button, the cmdCancelOrder_Click button event handler
in digMainwWnd runs.

Cancel Order Button Event Handler

Private Sub cmdCancelOrder Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdCancelOrder.Click
' Set the dialog state
m dlgOrder.init ((dlgOrder.Dlg Type.CANCEL ORDER DLG),
m contractInfo, m orderInfo, m underComp, Me)

m dlgOrder.ShowDialog ()
If m dlgOrder.ok Then
Call Twsl.cancelOrder (m_dlgOrder.orderId)
End If
End Sub

The crndCancelMktData button event handler does the following:
e Sets the state of the dlgOrder object by setting
dlgOrder.DIlg_Type.CANCEL_ORDER_DLG. This initializes the Cancel Order dialog.
o Displays the Cancel Order dialog.
e Calls the ActiveX method cancelOrder() when the OK button in the Cancel Order
dialog is clicked.

The cancelOrder() Method

This method has a single parameter, id, which is the same order ID that was specified in the
placeOrderEx() method. The cancelOrder() method is shown below.

| Sub cancelOrder (ByVal id as Integer)

Getting Started with the TWS ActiveX API 80

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/orderstatus.htm
http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/orderstatus.htm

Orders and Executions
Chapter 13: Placing and Canceling an Order

Modifying an Order

To modify an order using the API, resubmit the order you want to modify using the same order
id, but with the price or quantity modified as required. Only certain fields such as price or
guantity can be altered using this method. If you want to change the order type or action, you
will have to cancel the order and submit a new order.

Requesting "What-If" Data before You Place an Order

Wyhat If...

Another feature supported by the ActiveX sample application is the ability to request margin
and commission "what if" data before you place an order. This means that you can click the
What If button, set up your order as if you were actually placing it, then see what the
margins and commissions would be if the trade went through.

The IOrder object, as you recall from earlier in this chapter, is one of the parameters in the
placeOrderEx() method. Within the IOrder object, there is a property called whatlf(). When
this value is set to true, the margin and commission data is received by the sample application
and displayed in the TWS Server Responses text panel.

Getting Started with the TWS ActiveX API 81

Orders and Executions
Chapter 13: Placing and Canceling an Order

Placing Combo Orders

The TWS ActiveX API supports combination orders, which means that you can use the ActiveX
API sample application to place combo orders that include options, stock and futures legs (or
you can build your own application to place combo orders using the methods, events and
parameters in the API).

To place a combo order in the sample application, simply place an order as you normally
would by clicking the Place Order button, fill in the fields in the Ticker Description and Order
Description sections of the Place Order dialog, then click the Combo Legs button as shown
below, and add combo legs to the order in the Combination Order Legs dialog.

=, Place Order
B N\
Coniract Descriplion (ﬁ]der Diescription Ny
Conttacl |d il Aechion BLM
Symbol 0aeg sty oo
I
ype 5TE T T
Expiry
Lmbipt Price £ IH—
Shike i Wiolabiliby
Riight li AazeUnder Prica [
Mgt — GoodAfler Time [

Ewchange SMART Good TDate [
R | - B | Combolegs)H—

Currericy S0
locdSmbnl [DetaNeural | AlgoPasams |
Inchsde Expied o
Sec id Type

Market Dt
\f“ i Geneiic Tick Tage [700707 0010

/|
Maiket Depth Higshorical D.ata
Mz e aeht I SO N ey —
[eoth Riows:
. N Query Duration |
Exercise Dptions
Action (1o 2) Bar Size Setling
Duzritky What Lo Show |

o o —
[Drate Fomat I—
Stvde (1 er 2]

ok Cancsl |

Getting Started with the TWS ActiveX API 82

Orders and Executions
Chapter 13: Placing and Canceling an Order

The Combination Order Legs dialog appears.

Combination Order Legs

Combo Lags [Leg Detsils
Exchange I'Z'Z':-'II.IZ'Zl me | Shor Sale 3 Lecation | Conid Iﬂi
Ratio 1
| side v
Exchenge SMART
Opendloss 0
ShodSaleSit 0
Lacstion]
Remove
(S | cancel |

To add combo legs, simply fill in the fields in the Leg Details section of the dialog, then click
Add. Each leg you add appears in the list of combo legs on the left side of the dialog. You can
remove unwanted legs by clicking the row to select it, then clicking the Remove button. When
you click OK, you are returned to the Place Order dialog, where you click OK to place your
order.

How is this process different in the code from the standard order placement? Let’s find out!

Getting Started with the TWS ActiveX API 83

Orders and Executions
Chapter 13: Placing and Canceling an Order

Combo Legs Processing

Well, as you might have expected, the first part of the process is the same as when you place
a standard order: the cmdPlaceOrder_Click event handler runs and does its thing, and the
Place Order dialog is displayed, and your input values are stored as parameters of the
placeOrderEx() method. But when you click the Combo Legs button, a different event
handler, cmdAddCmbolLegs_Click runs and displays the Combination Order Legs dialog. The
actual combo leg list is created by the code in the Combination Order Legs
(dlgComboOrderLegs.vb), then passed to TWS as a property of the IContract COM object.

We can summarize the process this way:
e A container for the combo legs is declared and created. This container is the

IComboLegList COM object. It is created by the createCombolLeglList() factory
method.

In the button event handler for the Combo Legs button, this process can be seen in the
If statement:

Private Sub cmdAddCmboLegs Click (ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdAddCmbolLegs.Click
Dim dlgCombolLegs As New dlgComboOrderLegs

dlgComboLegs.Init (m contractInfo.combolLegs, m mainWnd.Twsl)
dlgComboLegs.ShowDialog ()
If dlgComboLegs.ok Then
Dim combolegs As TWSLib.IComboLegList
combolLegs = dlgCombolLegs.combolegs
m contractInfo.comboLegs = combolLegs
End If
End Sub

e In the code for the Combination Order Legs dialog, each individual combo leg entered in
the dialog is stored in another COM object, IComboLeg. As you click the Add button to
add each leg to the list, the legs are added to the IComboLegList object via the
mCombolegs property.

e The mCombolLegs property is set to comboLegs, which is a property of the IContract
COM object.

e The completed combo leg list, stored in the comboLegs property, is passed to TWS as
part of the IContract object in the placeOrderEx() method.

You MUST use the createComboleglist() factory method to create

the ICombolLegList object. Once created by a factory method, a COM

object is tied to a corresponding TWS COM object. If you try to pass a

COM object to another TWS COM object instance, you may get
unpredictable results.

Just as in standard orders, once the order has been placed, and assuming there are no errors
in the order, the ActiveX event orderStatus() returns the current status of the order from
TWS.

Getting Started with the TWS ActiveX API 84

Orders and Executions
Chapter 13: Placing and Canceling an Order

Combo Legs Code Example

To demonstrate how this works, here is a greatly simplified skeleton VB code example showing
a typical Combo Order. In this example, the user is placing a two-legged combo order. One leg
is for GOOG stock and the other leg is for a GOOG option.

Dim mCombolegs As ICombolLegList
Set mCombolegs = mTws.createComboLegList ()

Thhkkhkhkhkhkkhkhkkhkhkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhhkhkhkkhkhkhkhhkhkhkkhkhkhkhkhkhkkhkhkhkhkkhkhkkkx
'First Leg

Dim cmbLegl As IComboleg
Set cmbLegl = mCombolLegs.Add ()

With cmbLegl

.conId = 30351181

.ratio = 100

.Action = "BUY"
.exchange = "SMART"
.openClose = 0
.shortSaleSlot = 0
.designatedLocation = ""

End With

Thhkkhkhkhkhkhkkhkhkkhkhkhkhkkhkhkkhkhkhkhkkhkhkkhkhkhkhkkhkhkkhkhkhkhhkhkhkkhkhkhkhhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkkxk
'Second Leg

Dim cmbLeg2 As IComboleg
Set cmblLeg2 = mComboLegs.Add ()

With cmbLeg2

.conId = 49316734
.ratio =1

.Action = "SELL"
.exchange = "SMART"

.openClose = 0

.shortSaleSlot = 0

.designatedLocation = ""

End With
Thhkkhkhkhkhkhkkhkhkkhkhkhkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhhkhkhkkhkhkhkhhkhkhkkhkhkhkhkhkhkhkkhkhkkhkkhkhkhkxk

'contract description

Dim oContract As IContract
Set oContract = mTws.createContract

With oContract

Getting Started with the TWS ActiveX API 85

Orders and Executions
Chapter 13: Placing and Canceling an Order

.symbol = "GOOG"
.secType = "BAG"
.exchange = "SMART"
.currency = "USD"

.comboLegs = mCombolLegs 'including combo description in contract object

End With
ThAA AR AR KA KRR AR kAR ARk Ak kA kA hk kA hkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkkhkhkkhkhkhkhkkhkhkkkx
'order description

Dim oOrder As IOrder
Set oOrder = mTws.createOrder

With oOrder
.Action = "BUY"
.totalQuantity = 1
.orderType = "LMT"
.1lmtPrice = 1.5
End With

TAIKKEAAKAKA AR AAAAIAAAA AR ARk hkhkhkhkhkhkhkhkhkkkkkkkkkkkx
'Place order to TWS

Call mTws.placeOrderEx (nextvalidid, oContract, oOrder)

Getting Started with the TWS ActiveX API 86

Orders and Executions
Chapter 13: Placing and Canceling an Order

Placing Algo Orders

The TWS ActiveX API supports IBAlgo orders for US Equities and US Equity Options. Use
IBAlgo orders to automatically balance market impact with risk on your large volume orders.

To place an IBAlgo order in the sample application, simply place an order as you normally
would by clicking the Place Order button, fill in the fields in the Ticker Description and Order
Description sections of the Place Order dialog, then click the Algo Params button as shown
below and add an Algo strategy and Algo parameter/value pairs in the Algo Order Parameters

dialog..
=, Place Order
N
Conlract [esciiplion (ﬂili!l Description "‘\.1
Conlract |d ||:| Action |H|_n-'
Symbol [aaa Quarilty fo
T |
e STK B T —
Espiny |
Lent/Opt Price / 7
Shike ||:| Wolahlty
Riight Ii SAuelnder Price ||:|
Multiphe [Good After Time |

Exchange SMART \smd Til Diste |7)
Primay Exchangs [|
Cumrericy 50

LocalSgmbal [DehaNeural | Algo Params {elff———
Inchade Expired ||:|
Sec id Type |

ComboLegs |

Market Dt

_ Secld Iij Genessc Tick Tags [77 10071
2
Market Depth Histarical Data
g;rm E End Data/Time [/~ HHO0 b s
Exarcise Options e

pctonfloedl [|| BaSeeSemmg[T,

Duarkiy [|| whatwShw [Fanes

o |- —
DateFomast [
Sivle (1 01 21

Getting Started with the TWS ActiveX API 87

Orders and Executions

Chapter 13: Placing and Canceling an Order

The Algo Order Parameters dialog appears:

To add Algo parameters to an order, type the name of the Algo strategy in the Strategy field,
then type a parameter in the Param field, the value for the parameter in the Value field, and
click Add. Repeat for each Algo parameter/value pair you want to add. For example, you

might want to minimize market impact by slicing an options order over time as defined by the
Max Percentage value. In this case you would type minImpact in the Strategy field, then type
maxPctVol in the Param field and a percentage in the Value field. When you click OK, the Algo

Blgorithim

Shrateoy

Palameters:

Patam:

‘alue

#lgn Order Parameters

mirdmpact

|maaPct'l.-fu:|I
K :
Audd I Remove I
ok | Cacel |

parameters are added to your order.

That's what happens on the user side of things; now let’s take a look at the code.

Getting Started with the TWS ActiveX API

88

Orders and Executions
Chapter 13: Placing and Canceling an Order

Algo Order Processing

As expected, the first part of the process is the same as when you place a standard order: the
cmdPlaceOrder_Click event handler runs and does its thing, and the Place Order dialog is
displayed, and your input values are stored as parameters of the placeOrderEx() method.
But when you click the Algo Params button, a different event handler,
cmdAlgoParams_Click runs and displays the Algo Order Parameters dialog
(dlgAlgoParams.vb).

We can summarize the process this way:

e A container for the Algo parameters is declared and created. This container is the
ITagValueList COM object. It is created by the createTagValuelList() factory method.

e In the code for the Algo Order Parameters dialog, each individual parameter/value pair
entered in the dialog is stored in another COM object, ITagValue. As you click the Add
button to add each parameter/value pair to the list, the pairs are added to the
ITagValuelist object via the m_algoParams property.

e In cmdAlgoParams_Click, the Algo strategy and parameters are declared as
properties of m_orderInfo, which is set to the IOrder COM object in the Private Members
section of the code in VB_API_Sample.vb. The IOrder object, if you recall, is responsible
for sending the details of your order information to TWS.

In the button event handler for the Algo Params button, this process can be seen
below:

Private Sub cmdAlgoParams Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles cmdAlgoParams.Click
Dim dlg As New dlgAlgoParams

dlg.init (m orderInfo.algoStrategy, m orderInfo.algoParams,
m mainWnd.Twsl)

Dim res As DialogResult

res = dlg.ShowDialog ()

If res = Windows.Forms.DialogResult.OK Then
m orderInfo.algoStrategy = dlg.algoStrategy
m orderInfo.algoParams = dlg.algoParams

End If

End Sub

You MUST use the createTagValuelList() factory method to create

the ITagValuelList object, and you must use the createOrder()

factory method to create the I0Order COM object. Once created by a

factory method, a COM object is tied to a corresponding TWS COM
object. If you try to pass a COM object to another TWS COM object instance,
you may get unpredictable results.

Just as in standard orders, once the order has been placed, and assuming there are no errors

in the order, the ActiveX event orderStatus() returns the current status of the order from
TWS.

Getting Started with the TWS ActiveX API 89

Orders and Executions
Chapter 14: Exercising Options

Chapter 14: Exercising Options

This chapter discusses how the ActiveX sample application exercises options prior to
expiration, and instructs options to lapse. We'll also show you the methods, events and
parameters behind the Options Exercise area of the sample application. The fields you
complete in the Exercise Options dialog (another instance of the digOrder object, by the way)
are shown below.

=, ExerciseOptions

¢ Toniiact Desciiplion [Order Desciption
Contract [d i Action
Symbicl noog Cuaniity o
T
ype STE e
Expiry
Lt gt Price / l—
Shike 0 Violatihy
Right [r— AucUndecPice [
Miudtiphet Good Afles Time
Exchange SMART Good TlDate [~
Primasy Exchangs | [
Cuirancy sD
LocalSymbol [| AgoPaan: |
Inchade: Expired ||;|
Sec id Typs
Market Data
\.wd 5 Geneiic Tick Tags [T70 107 70010
.
Maiket Deplh Historical Data
Max Markat 8 [MDD Hrmenes
iy End Drshed/ Tiene
Froscin ok Guery Duration
L N BarSize Seting [
Quzritty |1 wihat to Show
Dverde 0ot 1) [o Regular Tiadng T
Wo) o Hours: 1 or 01
Date Format .
St 1 ox 2]
ok | Cancel |
Getting Started with the TWS ActiveX API 90

Orders and Executions
Chapter 14: Exercising Options

What Happens When I Click the Exercise Options Button?

Exercize Options...

When you click the Exercise Options button, the Exercise Options dialog appears. As we
mentioned earlier, this is yet another version of the dlgOrder object. You enter the contract
information in the Ticker Description fields, then enter the option exercise information in the
fields in the Option Exercise section. In the Action field, enter 1 to exercise the option specified
in the Ticker Description fields, or 2 to let the option expire. In the Override field, enter 1 to
override the system’s natural action, or 2 to not override. Click the OK button to execute your
desired action (exercise or expire the option).

So what happens in the code when you do all this?

Exercise Options Button Event Handler

When you click the Exercise Options button, the event handler
cmdExerciseOptions_Click, defined in digMainWnd, runs. Here is what the code for the
event handler looks like:

Exercise Options Button Event Handler

Private Sub cmdExerciseOptions Click (ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles cmdExerciseOptions.Click
' Set the dialog state
m _dlgOrder.init ((dlgOrder.Dlg Type.EXERCISE OPTIONS),
m contractInfo, m orderInfo, m underComp, Me)

m dlgOrder.ShowDialog ()
If m dlgOrder.ok Then
‘7TODO: get account in a less convoluted way
Call Twsl.exerciseOptionsEx (m_dlgOrder.orderlId, _
m _contractInfo, m dlgOrder.exerciseAction, _
m_dlgOrder.exerciseQuantity, m orderInfo.account, _
m dlgOrder.exerciseOverride)
End If

End Sub

cmdExerciseOptions_Click does the following:

e Sets the state of the digOrder object by setting
dlgOrder.DIg_Type.EXERCISE_OPTIONS_DLG. This initializes the Exercise Options
dialog, which is, as you might have expected, a version of the dlgOrder object.

e Displays the Exercise Options dialog.
e Calls the ActiveX method exerciseOptionsEx() when the OK button is clicked.

Getting Started with the TWS ActiveX API 91

Orders and Executions
Chapter 14: Exercising Options

The exerciseOptionsEx() Method

When you click OK in the Exercise Options dialog, the exerciseOptionssEx() method sends
your request to TWS and, if all the entries are valid, your desired action is executed.

Now let's see which parameters are used when you exercise an option. The
exerciseOptionsEx() method looks like this:

Sub exerciseOptionsEx (ByVal tickerId As Integer, ByVal contract As
TWSLib.IContract, ByVal exerciseAction As Integer, ByVal exerciseQuantity
As Integer, ByVal account As String, ByVal override As Integer)

Let’s take a look at the parameters of this method.

Parameter Description

tickerld The Id for the exercise request.

contract This structure contains a description of the contract for which market
data is being requested.

exerciseAction This represents the action you want to take on the specified option. A
value of 1 indicates that you want to exercise the option. 2 means
that you want to let the option expire.

exerciseQuantity The number of contracts to be exercised.
account This parameter specifies the IB account for institutional orders.
override This parameter specifies whether your setting will override the

system's natural action. For example, if your action is "exercise" and
the option is not in-the-money, by natural action the option would
not exercise. If you have override set to "yes" the natural action
would be overridden and the out-of-the money option would be
exercised. Values are 0 don't override or 1 to override.

This table is for illustrative purposes only and is not intended to portray valid API documentation.

As you can see from the table above, this method has several parameters that correspond to
the fields in the Exercise Options dialog. This means that the values you entered in the dialog
are passed to TWS by the parameters in the exerciseOptionsEx() method.

The contract parameter corresponds to the Ticker Description section of the dialog.
exerciseAction, exerciseQuantity, and override correspond to fields in the Options Exercise
section of the dialog. The tickerld parameter corresponds to the Ticker ID field in the dialog.
The contract COM object (TWS API COM object IContract) used here is the same COM object
that is used to get market data (and many other trading tasks!). For a complete list of the
properties in the contract structure, see the API Reference Guide.

In this case, there is no event that returns values from TWS.

‘ IContract is a TWS COM object that is created by the factory method
createContract(). You MUST use the createContract() factory
method to create this COM objects. Once created by a factory method,
a COM object is tied to a corresponding TWS COM object. If you try to

pass a COM object to another TWS COM object instance, you may get

unpredictable results.

Getting Started with the TWS ActiveX API 92

http://individuals.interactivebrokers.com/php/apiGuide/apiguide/activex/icontract.htm

Orders and Executions
Chapter 15: Extended Order Attributes

Chapter 15: Extended Order Attributes

This chapter discusses how to apply extended, or non-essential, order attributes to your order.
This sample action is different from many of the others we've looked at, as the extended order
attributes for the ActiveX API are actually included in the IOrder object, which you remember
from our discussion on placing orders. For ease of use, the sample application has a separate
dialog in which you can assign values to the extended order attributes. So although you will
see a new dialog when you click the Extended button, the selections you're setting do not
come from a new API method.

Here is the Extended Order Attributes dialog:

= Extended Order Attributes

Tifne i Foica Tralding Slop Price
OCA group R o
0cA e — T, —
Accoat [Pescars Olffsat |
Setting Fln [Eleciioric Exchange Dnly h
Clering Acoount Fitm Qucte Oiny h
Cleasing Infent MEBO Piice Cap |
Dpen/Ciose [0 OvenideParcariage o

Conclraints
Otigiry 1] BICC<: Auction Shategy fo
Didler Fref [B Stailing Price ﬁ
Patent 1d i B0 Stock Fed Price: |
Transmit [BOXDels —
Block Cledes il BOASOL: Stock Rarge Lower |
Sweep o Fill] BORAOL: Stock Aangs Upper |
Display Size o VOL Volstiy [
Trigge: Method [i V0L Volaiiy Type [1 o 2) —
Diutsice FATH i VOL Hedge DekaOrdes Type [
Hidden [VOL Hedge Debafu Frice |'—'
Driscaetiomany At : i WOL: Contiraeoue: Lpdate ||:|
Short Sales St i VOL: Rederence Pice Type —
[Tretutsral ary] 1ee2)
DesignatedLocation [~ Scale:Init Level Size |—
Instiutiona onky]
Fiudie 811 & [Scok: SubsLevelSie |‘—

Scale: Price Increment |

O Concel |

Getting Started with the TWS ActiveX API

93

Orders and Executions
Chapter 15: Extended Order Attributes

What Happens When I Click the Extended Button?

Extended...

Extended order attributes have no function by themselves. However, any value you enter in
the Extended Order Attributes dialog WILL be applied to every order you place in the sample
application. You use these attributes to place advanced orders such as trailing stop limit, VOL
and scale orders, as well modify other values for orders.

For a complete description of all of the extended order attributes in
the ActiveX API, see the Extended Order Attributes topic in the API
Reference Guide.

The code behind this process is fairly simple. When you click the Extended button, the event
handler cmdExtendedOrderAttribs_Click runs. This Click event simply displays the
Extended Order Attributes dialog, called digOrderAttribs.

When you click the OK button in the Extended Order Attributes dialog, the values entered in
the fields in the dialog are passed to the IOrder object, which stores all the information about
your order.

For a complete description of all of the properties in the IOrder object, see the
IOrder topic in the API Reference Guide.

That's all the Extended button does. Until you place an order, the extended attributes are just
that - attributes just sitting there waiting for something to happen. But once you create and
place an order, the values you entered/modified in the Extended Order Attributes dialog are
used in your order, and will continue to be applied to every order until you change them.

Next we’ll take a look at some of the other buttons in the sample application.

Getting Started with the TWS ActiveX API 94

http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/api/extended_order_attributes.htm
http://individuals.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/iorder.htm

Orders and Executions
Chapter 16: Requesting Open Orders

Chapter 16: Requesting Open Orders

In this chapter, we're going to take a look at three related tasks in the ActiveX API sample
application:

e Requesting Open Orders
e Requesting All Open Orders
e Requesting Auto Open Orders

How are they related?

Well, obviously they all give you information about open orders. The difference between them
is the Client ID, which you set (or not!) when you connect to TWS.

Running Multiple API Sessions

You can connect up to eight API sessions to one TWS client, but the catch is that you have to
assign a new client ID for each API session. Therefore, any orders sent from these clients can
be tracked through the life of the order, and everyone knows where they came from and who's
responsible for them. So be careful!:

Connection Parameters § |

P &ddress (leave blank for local host)

Part
|7495

Client |0

o <«

Ok Cancel

If you happen to have TWS up and running now and want to try this out, simply run multiple
sample API sessions as described in the following steps:

1 Click the Connect button and connect to the first session. Note that the Client ID is set
to "0."

2 Do the same for another session. If you don't change anything, you'll see that you are
not able to connect to this second session. In the Errors and Messages text panel on the
sample application, the API will kindly tell you "Already connected."

3 Now try it with a unique Client ID. Click Connect again, only this time type 1 (or any
other unique Client ID) in the Client ID field, then click OK.

Getting Started with the TWS ActiveX API 95

Orders and Executions
Chapter 16: Requesting Open Orders

The Difference between the Three Request Open Orders Buttons
Now you're ready to learn the difference between the three Request Open Orders
methods/buttons:
e Request Open Orders shows you any open orders made from that client, and if it's the
"0" client ID client, you'll also see open orders sent from TWS.

¢ Request All Open Orders method shows you open orders sent from ALL clients
connected to TWS, and all open orders that were sent from that TWS.

¢ Request Auto Open Orders method can only be used by the API with the client ID of
"0." Clicking this button sets the boolean parameter to "True" and forever binds TWS
orders to the API client. From that day forward, any time an open order exists on TWS
it will automatically be returned via the Ewrapper methods, and in this case be
displayed in the TWS Server Responses text panel of the sample application.

Got all that? Good, let's see the details.

What Happens When I Click the Req Open Orders Button?

Req Open Orders

When you click the Req Open Orders button, any open orders that currently exist are
displayed in the TWS Server Responses text panel of the main sample application window, as
shown below.

TS Server Responses

OpenorderEx called, orderid=109 s

Order:
orderld=109
clientld=0
permld=571 560302
action=3ELL
guantity=100
orderType=LMT
[mtPrice=23.15
auxPrice=0

Cantract:
conld=265395
symbol=DELL
zecType=STH
expiry=

£ *

If there are no open orders however, nothing will display in the panel.

Simple, right? So now let’s see what happens in the code.

Getting Started with the TWS ActiveX API 96

Orders and Executions
Chapter 16: Requesting Open Orders

Req Open Orders Button Event Handler

When you click the Req Open Orders button, the event handler cmdReqOpenOrders_Click
callls the ActiveX method reqOpenOrders().

Req Open Orders Button Event Handler

Private Sub cmdRegOpenOrders Click(ByVal eventSender As System.Object,

ByVal eventArgs As System.EvgntArgs) Handles cmdRegOpenOrders.Click
Call Twsl.reqgOpenOrders ()

End Sub

The reqOpenOrders() method, shown below, has no parameters.

| sub regOpenOrders ()

The openOrderEx() Event

The reqOpenOrders() method triggers the openOrderEx() event, which returns
information about open orders and displays it in the TWS Server Responses text panel. The
openOrderEx() event is shown below.

Sub openOrderEx (ByVal orderId As Integer, ByVal contract As
TWSLib.IContract, ByVal order As TWSLib.IOrder, ByVal As
TWSLib.IOrderState)

If you've read this book from the beginning, by now you should be familiar with the IContract
and IOrder COM objejcts, which contain properties that represent, respectively, a contract and
an order. The openOrderEx() event receives open order information via these two
structures, and also receives information from the IOrderState object, which contains
properties representing the margin and commissions fields for both pre- and post-trade data.

IContract is a TWS COM object that is created by the factory method

createContract(). IOrder is a TWS COM object that is created by the

factory method createOrder(). You MUST use the createContract()

and createOrder() factory methods to create these COM objects.
Once created by a factory method, a COM object is tied to a corresponding
TWS COM object. If you try to pass a COM object to another TWS COM object
instance, you may get unpredictable results.

Unfortunately, the openOrderEx() event handler is very long, so we won't include it here.
You can view it in the code for VB_API_Sample.vb in your IDE software.

Getting Started with the TWS ActiveX API 97

Orders and Executions
Chapter 16: Requesting Open Orders

The openOrderEnd() Event

There is one additional open order event used in the ActiveX API, the openOrderEnd() event.
This event, which has no parameters, serves as an end marker for a set of received open
orders. openOrderEnd() is called when all orders are sent to a client as a response to the
reqOpenOrders() method.

| sub openOrderEnd () |

The event handler for openOrderEnd() displays the end marker for the open orders
information displayed in the TWS Server Responses text panel of the sample application main
window.

What Happens When I Click the Req All Open Orders Button?

Reg All Open Orders

When you click the Req All Open Orders button, open orders sent from ALL clients connected
to TWS, and all open orders that were sent from this client are displayed in the TWS Server
Responses text panel of the main sample application window, as shown below.

Let’s see what happens in the code.

Req All Open Orders Button Event Handler

When you click the Req All Open Orders button, the event handler
cmdReqAllOpenOrders_Click callls the ActiveX method reqAllOpenOrders().

Req All Open Orders Button Event Handler

Private Sub cmdRegAllOpenOrders Click (ByVal eventSender As System.Object,

ByVal eventArgs As System.EventArgs) Handles cmdRegAllOpenOrders.Click
Call Twsl.regAllOpenOrders ()

End Sub

The reqAllOpenOrders() method, shown below, has no parameters.

| sub regAllOpenOrders () |

The reqAllOpenOrders() method triggers the openOrderEx() event, which returns
information about open orders and displays it in the TWS Server Responses text panel. See
the section on openOrderEx() earlier in this chapter for details about this event.

Getting Started with the TWS ActiveX API 98

Orders and Executions
Chapter 16: Requesting Open Orders

What Happens When I Click the Req Auto Open Orders Button?

Req Auto Open Orders

When you click the Req All Open Orders button, TWS orders are bound to the API client (the
client you are running!). From that day forward, any time an open order exists on TWS it will
automatically be returned via ActiveX openOrderEx() event, and displayed in the TWS
Server Responses text panel of the sample application.

Note that this function can only be used by the API with the client ID of “0.”

Let’s see what happens in the code.

Req Auto Open Orders Button Event Handler

When you click the Req All Open Orders button, the event handler
cmdRegqAutoOpenOrders_Click callls the ActiveX method reqAutoOpenOrders().

Req Auto Open Orders Button Event Handler

Private Sub cmdRegAutoOpenOrders Click(ByVal eventSender As System.Object,

ByVal eventArgs As System.EventArgs) Handles cmdRegAutoOpenOrders.Click
Call Twsl.regAutoOpenOrders (True)

End S

The reqAutoOpenOrders() Method

The regAutoOpenOrders() method, shown below, has no parameters.

| sub regAutoOpenOrders (ByVal bAutoBind As Integer) |

This method has a single parameter, bAutoBind. If this parameter is set to true (and notice
“(True)” in the call to the reqAutoOpenOrders() method above), newly created orders will
be implicitly associated with the client making the Auto Open Orders request. If the parameter
is set to false, no association is made.

In other words, if you are using an API with a Client ID of “0,” the autoBind parameter in
reqAutoOpenOrders is set to true and orders from ALL clients connected to TWS will be
reported to the sample application. If you're not Client ID 0, you’ll receive an error message
and the auto-binding won't be enabled.

The reqAutoOpenOrders() method triggers the openOrderEx() event, which returns

information about open orders and displays it in the TWS Server Responses text panel. See
the section on openOrderEx() earlier in this chapter for details about this event.

Getting Started with the TWS ActiveX API 99

Orders and Executions
Chapter 17: Requesting Executions

Chapter 17: Requesting Executions

This chapter shows you how to request execution reports using the Execution Report Filter
dialog in the ActiveX sample application. You can retrieve all execution reports, or only those
you want by entering specific criteria such as time, symbol, exchange and more. We'll show
you how to use the sample application to get these execution reports, and we’ll see the
methods, events and parameters behind the process.

What Happens When I Click the Req Executions Button?

Req Executions. ..

When you click the Req Executions button, the Execution Report Filter dialog appears. You
enter filter criteria for your execution reports by filling in the fields. You can filter your
execution reports by request ID, client ID, account code, time, symbol, security type,
exchange or action. If you leave all the fields blank except the Client ID field (which is filled in
with “0” by default), you will get reports of all of your executions. The report is displayed in
the TWS Server Responses text panel.

Request Id

Client Id o
Account Code [
Time [
Surnbl I—

SecType
Exchange
Action

Ok | Cancel |

Now let’s see what happens in the code behind the scenes.

Getting Started with the TWS ActiveX API 100

Orders and Executions
Chapter 17: Requesting Executions

Req Executions Button Event Handler

When you click the Req Executions button, the event handler cmdReqExecutions_Click,
defined in dlgMainWnd, runs. Here is what the code for the event handler looks like:

Req Executions Button Event Handler

Private Sub cmdRegExecutions Click(ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdRegExecutions.Click
Dim dlgExecFilter As New dlgExecFilter

dlgExecFilter.init (m_execFilter)
dlgExecFilter.ShowDialog ()
If dlgExecFilter.ok Then
Call Twsl.reqExecutionsEx (m_execFilter)
End If
End Sub

cmdExerciseOptions_Click does the following:

e Initializes and displays the Execution Filter dialog, dIgExecFilter.

e Calls the ActiveX method reqExecutionsEx().

The Execution Filter dialog includes one important piece of code that passes the values you
enter in the fields (Client ID, Account Code, Time, and so on), to the IExecutionFilter COM
object.

We mentioned before that the Client ID field comes with a default value of "0." This isn't by
chance! You can leave all of the other fields blank and everything will be fine. But if you leave
the Client ID field blank, you'll get nothing, no matter what other field values you may enter.
After you define the filter criteria and click OK, your values are passed to TWS via the
reqExecutionsEx() method.

The reqExecutionsEx() Method

The reqExecutionsEx() method sends the values you entered in the Execution Filter dialog
to TWS. Another way of saying this is that the filter criteria you entered in the Execution Filter
dialog are the parameters for this method, which is shown below.

Sub regExecutionsEx (ByVal filter As TWSLib.IExecutionFilter, ByVal reqld
As Integer)

IExecutionFilter is a TWS COM object that is created by the factory

method createExecutionFilter(). You MUST use the

createExecutionFilter() factory method to create this COM object.

Once created by a factory method, a COM object is tied to a
corresponding TWS COM object. If you try to pass a COM object to another
TWS COM object instance, you may get unpredictable results.

For a complete list of the properties in the IExecutionFilter COM object, see the API Reference
Guide.

Getting Started with the TWS ActiveX API 101

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/iexecutionfilter.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/iexecutionfilter.htm

Orders and Executions
Chapter 17: Requesting Executions

The execDetails() Method

Execution reports are returned via the execDetailsEx() event.

Sub execDetailsEx (ByVal orderId As Integer, ByVal contract As
TWSLib.IContract, ByVal execution As TWSLib.IExecution, ByVal regIld As
Integer)

As you can see from the event, execDetailsEx() contains the following parameters:

Parameter Description

orderld The order Id that was specified previously in the call to
placeOrder().

contract This structure contains a full description of the contract that
was executed.

execution This structure contains additional order execution details.

reqld The ID of the data request. Ensures that responses are

matched to requests if several requests are in process.

Tables are for illustrative purposes only and are not intended to represent valid API information.

The detailed information about your executions are included as properties of the execution
structure. The contract structure contains information about the contract that was traded. For
a complete list of the properties in the execution and contract structures, see the APL
Reference Guide.

The event handler for execDetailsEx() is too long to include here, but you can look at it in
Microsoft Visual Studio (or your favorite compatible IDE) to see the details.

The execDetailEnd() Event

There is one additional event involved in getting execution reports from TWS: the
execDetailsEnd() event. This event, which has a single parameter (regld), serves as an end
marker for a set of received execution reports. It is called when all executions have been sent
to a client as a response to the reqExecutionsx() method. Here is what the
execDetailsEnd() event looks like:

| Sub execDetailsEnd(ByVal regId As Integer)

The event handler for execDetailsEnd() displays the end marker for the execution reports
displayed in the TWS Server Responses text panel of the sample application main window.

This concludes the section on orders and order information. The next section discusses the
remaining tasks that you can perform using the ActiveX sample application (or using your own
custom application!), including requesting the current server time and subscribing to news
bulletins.

Getting Started with the TWS ActiveX API 102

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/activex_com_objects.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/activex/activex_com_objects.htm

Additional Tasks

This section describes some additional tasks that you can perform using the ActiveX API
sample application. We'll show you the methods, events and parameters behind such tasks as
requesting the current server time, the next ID, subscribing and unsubscribing to news
bulletins, and changing the server logging level.

Here's what you'll find in this section:

e Chapter 18 - Requesting the Current Time
e Chapter 19 - Requesting the Next ID

e Chapter 20 - Subscribing to News Bulletins

e Chapter 21 - Viewing and Changing the Server Logging Level

In addition to the tasks described in this chapter, the ActiveX API

sample application also includes a few more advanced functions,

including the ability to calculate volatility and option price, and support

for IBAlgos. For more information on these and other advanced

capabilities of the ActiveX API, see our API Reference Guide, available
from the Reference Guide tab on our IB API web page.

Getting Started with the TWS ActiveX API 103

Additional Tasks
Chapter 18 - Requesting the Current Time

Chapter 18 - Requesting the Current Time

This chapter discusses the method for requesting the current server time. Actually,
"discusses" is really not the correct word. It merely "states" the method, which is quite solitary
with no parameters to call its own.

What Happens When I Click the Current Time Button?

Current Time

You request the current server time by clicking the Current Time button The server time is
displayed in the TWS Server Responses text panel, as shown below.

TWE Server Responzes

Connecting to Tws using clientld O ...

ion 40 at 20080808 15:32:36 EST
[_ current time = 1215224053

This is a very simple process from a user’s point of view and the code that makes this happen
is also quite simple.

Current Time Button Event Handler

Just like the other buttons in the sample application, the Current Time button has an event
handler associated with it. When you click the button, the event handler
cmdReqCurrentTime_Click, defined in digMainWnd, runs. Here is what the code for the
event handler looks like:

Current Time Button Event Handler

Private Sub cmdReqCurrentTime Click (ByVal sender As Object, ByVal e As
System.EventArgs) Handles cmdReqCurrentTime.Click

Call Twsl.reqCurrentTime ()
End Sub

cmdReqCurrentTime_Click calls the ActiveX method reqCurrentTime(), and that's pretty
much all it does!

Getting Started with the TWS ActiveX API 104

Additional Tasks
Chapter 18 - Requesting the Current Time

The reqCurrentTime() Method

The reqCurrentTime() method is so simple that is doesn’t even have any parameters. All it
does is trigger the currentTime() event, which returns the current server time.

| Sub regCurrentTime () |

The currentTime() Event Handler

The currentTime() event has only one parameter, time, which as you might have guessed,
returns the current time on the server.

The currentTime() event and event handler are shown below.

| Sub currentTime (ByVal time As Integer)

Current Time Event

Private Sub Twsl currentTime (ByVal sender As Object, ByVal eventArgs As
AxTWSLib. DTwsEvents currentTimeEvent) Handles Twsl.currentTime

Dim displayString As String
displayString = "current time = " & eventArgs.time

Call m utils.addListItem(Utils.List Types.SERVER RESPONSES, displayString)
' move into view

lstServerResponses.TopIndex = lstServerResponses.Items.Count - 1
End Sub

Getting Started with the TWS ActiveX API 105

Additional Tasks
Chapter 19: Requesting the Next Order ID

Chapter 19: Requesting the Next Order ID

Each order you place in TWS (and in an API application) has a unique order ID assigned to it.
There is a rule about order IDs in TWS: Each successive order ID must be greater than the
most recently used order ID. As an example, consider the situation in which you place an
orders using order ID 1, then place an order using order ID 5. The next available order ID
would be 6; you can never go back and use 2, 3 or 4. Order ID 6 is greater than order ID 5,
the most recently used order ID.

You can use the TWS ActiveX API to request the next valid order ID that can be used when
placing an order. You might use this functionality if you are creating your own custom trading
application and with to ensure that each order uses a legal order ID.

The reqlds() Method

The ActiveX method that you use to request the next valid ID is reqIDs(). After calling this
method, the nextValidId() event is triggered, and the next valid ID is returned from TWS.
That ID will reflect any autobinding that has occurred (which generates new IDs and
increments the next valid ID therein).

The reqIDs() method is shown below.

| Sub reqlds (ByVal numlIds As Integer) |

reqIDs() has a single parameter, numlids. This parameter however is simply a placeholder
and has no real purpose. Simply set this parameter to any integer to make the method work
the way it’s supposed to.

The nextValidId() Event

As we mentioned above, the next valid order ID is returned from TWS via the nextValidIld()
event. This event is also triggered when you successfully connect to TWS. The nextValidIld()
event looks like this:

| Sub nextValidId(ByVal id As Integer) |

There is only one parameter returned with this event, id, which as you probably figured out by
now returns the next available order ID received from TWS. Increment all successive orders
by one based on this ID.

Getting Started with the TWS ActiveX API 106

Additional Tasks
Chapter 20: Subscribing to News Bulletins

Chapter 20: Subscribing to News Bulletins

This chapter shows you how to subscribe to IB news bulletins through the ActiveX sample
application. Once you subscribe, all bulletins will display in the TWS Server Responses text

panel of the sample application. The news bulletins keep you informed of important exchange
disruptions.

We will show you the methods, events and parameters responsible for letting you subscribe
and unsubscribe to news bulletin feature in the ActiveX sample application.

What Happens When I Click the Req News Bulletins Button?

Req Mewws Bulletins...

When you click the Req News Bulletins button, the IB News Bulletin Subscription dialog
appears. In the dialog, you can elect to receive new messages only, or receive all the current
day’s messages and any new messages. These two options are presented as radio buttons.
After you select your choice, click the Subscribe button to submit your subscription.

IB Hews Bulletin Subscription

When subsctibing to 1B nesw s bulletins wou have 2 options:
* receive new messages only.

(" receive all current day's messages and any New MEssane

Subscribe UnSubscribe Close

Once you subscribe to news bulletins, the news bulletins themselves will appear ???

That’s how you subscribe to news bulletins using the ActiveX API sample application. Keep
reading to learn what happens in the code during this process.

Getting Started with the TWS ActiveX API 107

Additional Tasks
Chapter 20: Subscribing to News Bulletins

Req News Bulletins Button Event Handler

When you click the Req News Bulletins button, the event handler cmdReqNews_Click,
defined in dlgMainWnd, runs. Here is what the code for the event handler looks like:

Req News Bulletins Button Event Handler

Private Sub cmdRegNews Click (ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdRegNews.Click
m_dlgNewsBulletins.ShowDialog ()
If m dlgNewsBulletins.ok Then
If m dlgNewsBulletins.subscribe = True Then
Call Twsl.reqNewsBulletins (m_dlgNewsBulletins.allMsgs)
Else
Call Twsl.cancelNewsBulletins ()
End If
End If
End Sub

cmdReqNews_ Click does the following:

e Initializes and displays the IB News Bulletin Subscription dialog, digNewsBulletins.

e (Calls the ActiveX method reqNewsBulletins() if the user clicks the Subscribe button
in the dialog.

The reqNewsBulletins() method

This method tells TWS that you want to subscribe to news bulletins.

| Sub regNewsBulletins (ByVal allDaysMsgs As String) |

reqNewsBulletins() has one parameter: allDaysMsgs. If you select the receive new
messages only radio button in the IB News Bulletin Subscription dialog, the allDaysMsgs
parameter, which asks "receive ALL messages, old and new?" will be set to false, which
basically means that you will receive only new news bulletins. If you select receive all the
current day's messages and any new messages, the allDaysMsgs parameter is set to true,
which means, that you will receive all news bulletins for the current day PLUS any new news
bulletins. Either way, you are now subscribed to news bulletins, and either way you will
receive any NEW bulletins that get posted fromthe time you subscribe.

News bulletins are returned to the ActiveX sample application via the updateNewsBulletin()
event.

Getting Started with the TWS ActiveX API 108

Additional Tasks
Chapter 20: Subscribing to News Bulletins

The updateNewsBulletin() Method

The bulletins are returned via the updateNewsBulletin() event.

Sub updateNewsBulletin (ByVal msgId As Short, ByVal msgType As Short,
ByVal message As String, ByVal origExchange As String)

updateNewsBulletin() contains the following parameters:

Parameter Description

msgld The bulletin ID, incrementing for each new bulletin.

msgType Specifies the type of bulletin. Valid values include:
e 1 = Reqular news bulletin
e 2 = Exchange no longer available for trading

e 3 = Exchange is available for trading

message The bulletin's message text.

origExchange The exchange from which this message originated.

Tables are for illustrative purposes only and are not intended to represent valid API information.

Canceling News Bulletins

If you're tired of knowing what's going on around you, you can elect to unsubscribe, or cancel
the news bulletins. To unsubscribe to news bulletin, you first need to click the Req News
Bulletins button in the ActiveX sample application. Then you click Unsubscribe in the IB
News Bulletin Subscription dialog, and we call the cancelNewsBulletins() method, which as
the name implies, cancels your news bulletin subscription.

The cancelNewsBulletins() method header looks like this:

| Sub cancelNewsBulletins () |

Because you are simply canceling a request, there are no values returned by this method.

Getting Started with the TWS ActiveX API 109

Additional Tasks
Chapter 21: Viewing and Changing the Server Logging Level

Chapter 21: Viewing and Changing the Server
Logging Level

This chapter shows you how to view and change the server logging level.

As client requests are processed (both system and API clients), TWS logs certain information
to its log.txt log file located in the installation directory. The purpose of this file is to help
resolve problems by providing some insight into the state of the program before the problem
occurred. In the ActiveX sample application, you can specify how detailed the information will
be when entered into the log.txt file. Basically, the higher the log level, the more performance
overhead that may be incurred. By default, the server logging level is set to "2" for error
logging.

See our API Reference Guide for more information about API
logging. The API Reference Guide is available from the Application

Programming Interfaces page on our web site as an online guide
or a downloadable/printable PDF.

What Happens When I Click the Log Configuration Button?

Log Configuration. ..

To see or change the server logging level, you first click the Log Configuration button on the
ActiveX sample application. In the Log Configuration dialog that appears, you select the
logging level from the drop-down. You can select System, Error, Warning, Information or
Detail. After you make your selection, click OK to close the dialog. Of course, you won't really
see any changes in the sample application unless you encounter a problem of some kind.

Log Configuration r's_<|

TS Server

Lo Level ; Error] X
M
Error :

O [Warning
Information
Dt ail T
System

Error

Narning W

That's what happens on the user side of things. Let’s see what happens in the code.

Getting Started with the TWS ActiveX API 110

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide.htm

Additional Tasks
Chapter 21: Viewing and Changing the Server Logging Level

Log Configuration Button Event Handler

As with all the other buttons on the sample applications, when you click the Log
Configuration button, an event handler in digMainWind runs. The event handler for this
button is called cmdServerLoglLevel_Click and is shown below.

Log Configuration Button Event Handler

Private Sub cmdServerLogLevel Click (ByVal eventSender As System.Object,
ByVal eventArgs As System.EventArgs) Handles cmdServerLogLevel.Click
m_dlgLogConfig.ShowDialog ()
If m dlgLogConfig.ok Then
Call Twsl.setServerLogLevel (m _dlgLogConfig.serverLogLevel ())
End If
End Sub

cmdServerLoglevel_Click does the following:

e Initializes and displays the Log Configuration dialog (the digLogConfig object).
e (Calls the ActiveX method setServerLogLevel() when the OK button is clicked.

The default level appears in the Log Level field of the Log Configuration dialog. We've
expanded the dropdown list in the figure on the previous page just to show you the available
log levels. Once you select a level and click OK, we call the setServerLogLevel() method.

The setServerLoglLevel() Method

The setServerLoglLevel() method contains a single parameter, logLevel. This parameter
passes the log level you selected in the Log Configuration dialog to TWS.

| Sub setServerLoglevel (ByVal logLevel As Integer) |

The logLevel parameter specifies the level of log entry detail used by TWS when processing
API requests. The valid values for this parameter correspond to the choices in the Log Level
dropdown in the Log Configuration dialog:

e 1 =SYSTEM

e 2 =ERROR

e 3 = WARNING

e 4 = INFORMATION

e 5 =DETAIL

For more information about log levels and log entries, see the API
Logging topic in the API Reference Guide.

There are no parameters passed from TWS to the API in this process; therefore, there is no
corresponding event.

This concludes our discussion of the ActiveX sample application for individual accounts.

Getting Started with the TWS ActiveX API 111

http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/api_logging.htm
http://www.interactivebrokers.com/php/apiUsersGuide/apiguide/api/api_logging.htm

Additional Tasks
Chapter 21: Viewing and Changing the Server Logging Level

Getting Started with the TWS ActiveX API 112

Where to Go from Here

If you've come this far and actually read the book, you now have a pretty decent grasp on
what the ActiveX API can do, and how to make it do some of the things you want. Now we give
you a bit more information about how to link to TWS with our ActiveX API, and we suggest

some helpful outside resources you can use to help you move forward.

This section contains the following chapters:

e Chapter 22 - Linking to TWS using the TWS ActiveX API

e Chapter 23 - Additional Resources

Getting Started with the TWS ActiveX API 113

Where to Go from Here
Chapter 22 - Linking to TWS using the TWS ActiveX API

Chapter 22 - Linking to TWS using the TWS
ActiveX API

If you have the skill and confidence to handle Visual Basic or VB.NET on your own, you can
build your own ActiveX API application to link to TWS, using the following steps as a guide.

Before you can use third-party ActiveX controls, you must register them.
To link using the ActiveX control

1 Drop the Tws.ocx ActiveX control onto a form or dialog box.

2 Call the following methods:

e Call the connect() method to connect to the running application.

e Call the methods you need to perform whatever operations you require, such as
the reqMktDataEx() method to request market data.

3 Call the placeOrderEx() method to place an order. Orders using extended attributes
require that ActiveX properties representing them be set first.
4 Handle the following events:
e Handle the nextValidld() event to receive the next available valid order ID.
Increment the ID by one for successive orders.
e Handle the tickPrice() and tickSize() events to receive the market data.
e Handle the orderStatus() event to receive status information about orders.
e Handle the error() event to receive error information.

e Handle the connectionClosed() event to be notified in case the application stops
communicating with the ActiveX control.

Getting Started with the TWS ActiveX API 114

Where to Go from Here
Chapter 22 - Linking to TWS using the TWS ActiveX API

Registering Third-Party ActiveX Controls

To use a third-party ActiveX control in Visual Basic, you must first register it.

When you install our API software, the TWS ActiveX control, Tws.ocx, is automatically
registered for you. if you install the Beta API software, the beta version of the TWS ActiveX
control is registered and the production version of the ActiveX control is no longer registered.
This is important to remember because if you try to run the production version of the ActiveX
sample application after having installed the Beta API software, you will get errors unless you
re-register the production version of the TWS ActiveX control!

To register the ActiveX control, follow these instructions:

1

In Windows Explorer, navigate to the API software installation folder (typically C:\Jts),
then open the ActiveX folder.

Right-click the file Tws.ocx file and select Open With...

Click the Open With... button to clear the Caution box, then select the Select the
program from a list radio button and click OK.

Click the Browse button, then navigate to the Windows\System32 folder and select the
file regsvr32.exe. Click Open.

Click OK.

A message appears to tell you that the Tws.ocx file was successfully registered.

Getting Started with the TWS ActiveX API 115

Where to Go from Here
Chapter 23 - Additional Resources

Chapter 23 - Additional Resources

There are many resources out there that will be adequate in getting you where you need to
go. If you have some books or places that you like, feel free to stick with them. The following
are the resources we find most helpful, and perhaps they'll be good to you, too!

Help with Visual Basic and VB.NET Programming

While this book is intended for users with Visual Basic or VB.NET programming experience, we
understand that even experienced programmers need help every once in a while.

The best place to go to find additional help with Visual Basic or Visual Studio is the Microsoft
web site. Just type http://msdn.microsoft.com/en-us/vbasic/default.aspx in your browser's
address line. This is the Visual Basic Developer Center, and from here you can access
complete information about Visual Studio and Visual Basic.

There are literally hundreds of additional printed and web-based resources for Visual Basic
programmers. We encourage you to investigate these on your own.

Help with the TWS ActiveX API

For help specific to the TWS ActiveX API, the one best place to go, really the ONLY place to go,
is the Interactive Brokers website. Once you get there, you have lots of resources. Just type
www.interactivebrokers.com in your browser's address line. Now that you're there, let me tell
you where you can go.

As of this writing, the IB website looks as I'm describing. IB has a
tendency to revamp the look and organization of their site every
year or two, so have a little patience if it looks slightly different
from what's described here.

The API Reference Guide

The API Reference Guide includes sections for each API technology, including the DDE for
Excel. The upper level topics which are shown directly below the main book are applicable
across the board to all or multiple platforms.

To access the API Reference Guide from the IB web site, select API Solutions from the
Trading menu, then click the IB API button, then click the Reference Guide tab. Click the
Online API Reference Guide button to open the online guide, which contains a section
devoted entirely to the DDE for Excel API.

The API Beta and API Production Release Notes

The beta notes are in a single page file, and include descriptions of any new additions to the
API (all platforms) that haven't yet been pushed to production. The API Release Notes opens
an index page that includes links to all of the past years' release notes pages. The index
provides one-line titles of all the features included in each release.

To access these notes from the IB web site, select API Solutions from the Trading menu, then
click the IB API button, then click the Release Notes tab and select a link to the latest API

Getting Started with the TWS ActiveX API 116

http://msdn.microsoft.com/en-us/vbasic/default.aspx
http://www.interactivebrokers.com

Where to Go from Here
Chapter 23 - Additional Resources

production release notes. You can also access the release notes for the latest API Beta release
from this page.

The TWS API Webinars

IB hosts free online webinars through WebEx to help educate their customers and other
traders about the IB offerings. They present the API webinar about once per month, and have
it recorded on the website for anyone to listen to at any time.

e To register for the API webinar, from the IB web site click Education, then select
Webinars. Click the Live Webinars button, then click the API tab.

e To view the recorded version of the API webinar, from the Live Webinars page click
the Watch Previously Recorded Webinars button. Links to recorded versions of
previously recorded webinars are listed on the page.

API Customer Forums

You can trade ideas and send out pleas for help via the IB customer base accessible through
both the IB Bulletin Board and the Traders' Chat. The bulletin board includes a thread for the
API, and thus provides an ongoing transcript of questions and answers in which you might find
the answer to your question. The Traders' Chat is an instant-message type of medium and
doesn't retain any record of conversations.

e "To view or participate in the IB Bulletin Board, go to the Education menu and click
Bulletin Boards & Chats. Click the Bulletin Board tab, then click the Launch IB
Discussion Forum button to access all of our bulletin boards, including the TWS API
bulletin board.

e To participate in the Traders' Chat, you need to click the Chat icon from the menu bar
on TWS. Note that both of these customer forums are for IB customers only.

IB Customer Service

IB customers can also call or email customer service if you can't find the answer to your
question. However, IB makes it clear that the APIs are designed for use by programmers and
that their support in this area is limited. Still, the customer service crew is very knowledgeable
and will do their best to help resolve your issue. Simply send an email to:

api@interactivebrokers.com

IB Features Poll

The IB Features Poll lets IB customers submit suggestions for future product features, and
vote and comment on existing suggestions.

From the IB web site, click About IB, then select New Features Poll. Suggestions are listed by

category; click a plus sign next to a category to view all feature suggestions for that category.
To submit a suggestion, click the Submit Suggestion link.

Getting Started with the TWS ActiveX API 117

Where to Go from Here
Chapter 23 - Additional Resources

Getting Started with the TWS ActiveX API 118

Appendix A - Extended Order
Attributes

Attribute Valid Values
timelnForce DAY

GTC

OPG

I0C
ocaGroup String
account The account number, used for institutional and advisor accounts.
open/close 0, C (for institutions)
origin 0, 1 (for institutions)
orderRef String
transmit 0 (don't transmit)

1 (transmit)

Parent order
Id

String (the order ID used for the parent order, use for bracket and auto
trailing stop orders)

blockOrder 0 (not a block order)

1 (this is a block order)
sweepToFill 0 (not a sweep-to-fill order)

1 (this is a sweep-to-fill order)
displaySize String (publicly disclosed order size)

Getting Started with the TWS ActiveX API for Advisors 119

Appendix A - Extended Order Attributes

Attribute \VEULREITES

triggerMethod

Specifies how simulated Stop, Stop-Limit, and Trailing Stop orders are
triggered.

0 - the default value. The "double bid/ask" method will be used for orders
for OTC stocks and US options. All other orders will use the "last"
method.

1 - use "double bid/ask" method, where stop orders are triggered based
on two consecutive bid or ask prices.

2 - "last" method, where stop orders are triggered based on the last
price.

3 - "double-last" method, where stop orders are triggered based on last
two prices.

4 - “bid-ask” method. For a buy order, a single occurrence of the bid
price must be at or above the trigger price. For a sell order, a single
occurrence of the ask price must be at or below the trigger price.

7 - “last-or-bid-ask” method. For a buy order, a single bid price or the
last price must be at or above the trigger price. For a sell order, a single
ask price or the last price must be at or below the trigger price.

8 - "mid-point” method, where the midpoint must be at or above (for a
buy) or at or below (for a sell) the trigger price, and the spread between
the bid and ask must be less than 0.1% of the midpoint.

Hidden

Only valid for orders routed to Island.
0 - False
1 (order not visible when viewing market depth)

Discretionary

Used in conjunction with a limit order to give the order a greater price

Amount range over which to execute.

Good After Enter the date and time after which the order will become active. Use the

Time format YYYYMMDD hh:mm:ss

Good 'Till The order continues working until the close of market on the date you

Date enter. Use the format YYYYMMDD. To specify a time of day to close the
order, enter the time using the format HH:MM:SS. Specify the time zone
using a valid three-letter acronym.

FA Group For Advisor accounts only. The name of the Account Group.

FA Method For Advisor accounts only. The share allocation method.

EqualQuantity
NetLiq
AvailableEquity
PctChange

FA Percentage

For Advisor accounts only. The share allocation percentage.

FA Profile For Advisor accounts only. The name of the Share Allocation profile.
Short Sale For institutional accounts only; for SSHORT actions.
Slot 1 - If you hold the shares

2 - Shares will be delivered from elsewhere.
Short Sale If shares are delivered from elsewhere, enter where in a comma-
Location delimited list with no spaces. For institutional accounts only.

Getting Started with the TWS ActiveX API for Advisors 120

Appendix A - Extended Order Attributes

Attribute \VEULREITES

OCA Type 1 = Cancel on Fill with Block
2 = Reduce on Fill with Block
3 = Reduce on Fill without Block
Rule 80A Individual = 'T'
Agency ="A’,
AgentOtherMember = 'W'
IndividualPTIA = 'J'
AgencyPTIA = 'U'
AgentOtherMemberPTIA = 'M'
IndividualPT = 'K'
AgencyPT ="Y"
AgentOtherMemberPT = 'N'
Settling Firm Institutions only
All or None 0 = false
1 = true
Minimum Qty Identifies the order as a minimum quantity order.
Percent Offset | The percent offset for relative orders.
Electronic 0 = false
Trade Only 1 = true
Firm Quote 0 = false
Only 1 = true
NBBO Price Maximum SMART order distance from the NBBO.
Cap
Auction For BOX exchange only.
Strategy match = 1

improvement = 2
transparent = 3

Starting Price

The starting price. For BOX orders only.

Stock Ref Used for VOL orders to compute the limit price sent to an exchange

Price (whether or not Continuous Update is used), and for price range
monitoring. Also used for price improvement option orders.

Delta The stock delta. For BOX orders only.

Stock Range
Lower

The lower value for the acceptable underlying stock price range. For price
improvement option orders on BOX and VOL orders with dynamic
management.

Stock Range
Upper

The upper value for the acceptable underlying stock price range. For price
improvement option orders on BOX and VOL orders with dynamic
management.

Volatility

The option price in volatility, as calculated by TWS

" Option Analytics. This value is expressed as a percent and is used to
calculate the limit price sent to the exchange.

Getting Started with the TWS ActiveX API for Advisors 121

Appendix A - Extended Order Attributes

Attribute \VEULREITES

Volatility Type 1 = daily
2 = annual
Reference 1 = average
Price Type 2 = BidOrAsk
Hedge Delta Prior to TWS
Order Type Release 859, use "1" to send a market order, "0" for no order. After TWS
859, enter an accepted order type such as: MKT, LMT, REL.
Continuous 0 = false
Update 1 = true
Hedge Delta Enter the Aux Price for Hedge Delta order types that require one.
Aux Price
Trail Stop Used for Trailing Stop Limit orders only. This is the stop trigger price for
Price TRAILLIMIT orders.
Scale Num Used for Scale orders only, this value defines the number of components
Components in the order.
Scale NO LONGER SUPPORTED
Component
Size
Scale Price Used for Scale orders only, this value is used to calculate the per-unit
Increment price of each component in the order. This cannot be a negative number.
Outside RTH 0 = false
1 = true

Getting Started with the TWS ActiveX API for Advisors 122

Appendix B -

Values

Field
Account Code

Account Page

Description
The account number.

Notes

Account Type

Identifies the IB account type.

Accrued Cash

Reflects the current month's accrued
debit and credit interest to date, updated
daily.

At the beginning of
each month, the past
month’s accrual is
added to the cash
balance and this field is
zeroed out.

Available
Funds

For securities:
Equity with Loan Value - Initial margin

For commodities:
Net Liquidation Value - Initial margin

Buying Power

Cash Account

(Minimum (Equity with Loan Value,
Previous Day Equity with Loan Value)-
Initial Margin)

Standard Margin Account

Available Funds*4

Cash Balance

For securities:
Settled cash + sales at the time of trade

For commodities:
Settled cash + sales at the time of trade
+ futures PNL

Currency

Shows the currency types that are listed
in the Market Value area.

Cushion

Shows your current margin cushion.

Day Trades
Remaining

Number of day trades left for pattern day
trader period.

Day Trades
Remaining
T+1, T+2,
T+3, T+4

The number of day trades you have left
for a 4-day pattern day-trader.

Getting Started with the TWS ActiveX API for Advisors 123

Appendix B - Account Page Values

Field Description Notes
Equity With For Securities:
Loan Value e Cash Account: Settled Cash

. Margin Account:

e Total cash value + stock value
+ bond value + (non-U.S. &
Canada securities options
value)

For Commodities:

e Cash Account: Total cash value
+ commodities option value -
futures maintenance margin
requirement + minimum (0O,
futures PNL)

. Margin Account: Total cash
value + commodities option
value - futures maintenance
margin requirement

Excess Equity with Loan Value - Maintenance
Liquidity margin

Exchange Rate

The exchange rate of the currency to
your base currency.

Full Available For securities:
Funds Equity with Loan Value - Initial margin
For commodities:
Net Liquidation Value - Initial margin
Full Excess Equity with Loan Value - Maintenance
Liquidity margin

Full Init Margin
Req

Overnight initial margin requirement in
the base currency of the account.

Full Maint
Margin Req

Maintenance margin requirement as of
next period's margin change in the base
currency of the account.

Future Option
Value

Real-time mark-to-market value of
futures options.

Futures PNL

Real-time change in futures value since
last settlement.

Gross Position
Value

Long Stock Value + Short Stock Value +
Long Option Value + Short Option Value.

Init Margin
Req

Initial margin requirement in the base
currency of the account.

Getting Started with the TWS ActiveX API for Advisors 124

Appendix B - Account Page Values

Field Description Notes
Leverage For Securities:
. Gross Position value / Net
Liquidation value
For Commodities:
e Net Liquidation value - Initial
margin
Look Ahead For Securities:
il e Equity with loan value - look
Funds o -
ahead initial margin.
For Commodities:
e Net Liquidation value - look
ahead initial margin.
Look Ahead Equity with loan value - look ahead
Excess maintenance margin.
Liquidity
Look Ahead Initial margin requirement as of next
Init Margin period's margin change in the base
Req currency of the account.
Look Ahead Maintenance margin requirement as of
Maint Margin next period's margin change in the base
Req currency of the account.
Look Ahead Indicates when the next margin period
Next Change begins.
Maint Margin Maintenance margin requirement in the
Req base currency of the account.

Net Liquidation

For Securities:

e Total cash value + stock value
+ securities options value +
bond value

For Commodities:

e Total cash value +
commodities options value

Net Liquidation
by Currency

Same as above for individual currencies.

Option Market
Value

Real-time mark-to-market value of
securities options.

PNL

The difference between the current
market value of your open positions and
the average cost, or Value - Average
Cost.

Previous Day
Equity with
Loan Value

Marginable Equity with Loan Value as of
16:00 ET the previous day, only
applicable to securities.

Getting Started with the TWS ActiveX API for Advisors 125

Appendix B - Account Page Values

Field
Realized PnL

Description

Shows your profit on closed positions,
which is the difference between your
entry execution cost and exit execution
cost, or (execution price + commissions
to open the positions) - (execution price
+ commissions to close the position).

Notes

Reg T Equity

Initial margin requirements calculated
under US Regulation T rules.

Reg T Margin

For Securities:
. Cash Account: Settled Cash

e Margin Account: Total cash
value + stock value + bond
value + (non-U.S. & Canada
securities options value)

For Commodities:

e Cash Account: Total cash value
+ commodities option value -
futures maintenance margin
requirement + minimum (0O,
futures PNL)

e Margin Account: Total cash
value - futures maintenance
margin requirement

SMA

Max ((EWL - US initial margin
requirements)*, (Prior Day SMA +/-
change in day's cash +/- US initial margin
requirements** for trades made during
the day.))

*calculated end of day under US Stock
rules, regardless of country of trading.

**at the time of the trade

Only applicable for
securities.

Stock Market
Value

Real-time mark-to-market value of stock

Total Cash
Balance

Cash recognized at the time of trade +
futures PNL

Total Cash
Value

Total cash value of stock, commodities
and securities

Getting Started with the TWS ActiveX API for Advisors 126

Index

A
account page values B-123
Active X API
preparing to use 2-21
ActiveX
registering third-party controls 6-115
ActiveX API
additional resources 6-116
installing an IDE 2-22
ActiveX API sample application
connecting to 2-28
ActiveX API, help with 6-116
ActiveX controls
registering 2-27, 6-115
ActiveX sample application
framework 3-34
additional resources 6-116
additional trading tasks 5-103
Algo Order Parameters 4-88
Algo order processing 4-89
Algo orders 4-87
Algo Params button event handler 4-89
API
reasons for using 1-18
API beta notes 6-116
API Reference Guide 6-116
API release notes 6-116
API software
downloading 2-24
installing 2-27
API support email 6-117
API technologies 1-19
API webinars 6-117

C

Canc Real Time Bars button event handler 3-63
Cancel Hist. Data button event handler 3-58
Cancel Mkt Data button 3-45, 3-52, 3-57

Cancel Mkt Depth button event handler 3-52
Cancel Subscription button event handler 3-69
cancelHistoricalData() 3-58

canceling a market scanner subscription 3-69
canceling historical data 3-53, 3-57, 3-58
canceling market data 3-39, 3-45, 3-46
canceling market depth 3-47, 3-52

canceling market scanner subscriptiions 3-64
canceling news bulletins 5-109

canceling orders 4-76, 4-80

canceling real time bars 3-59, 3-63
cancelMktData() 3-46

cancelMktDepth() 3-52

cancelNewsBulletins() 5-109

Getting Started wtih the TWS ActiveX API for Advisors

cancelOrder() 4-80
cancelRealTimeBars() 3-63
changing the server logging level 5-110
Client ID and multiple API sessions 4-95
cmdAddCmbolegs_Click 4-84
cmdAlgoParams_Click 4-89
cmdCancelHistData_Click 3-58
cmdCancelMktData_Click 3-45
cmdCancelMktDepth_Click 3-52
cmdCancelOrder_Click 4-80
cmdCancelRealTimeBars_Click 3-63
cmdCancelSubscription_Click 3-69
cmdConnect_Click 3-37
cmdDisconnect_Click 3-38
cmdExerciseOptions_Click 4-91
cmdExtendedOrderAttribs_Click 4-94
cmdRegAllOpenOrders_Click 4-98
cmdRegAutoOpenOrders_Click 4-99
cmdReqgContractData_Click 3-71
cmdReqgCurrentTime_Click 5-104
cmdReqgExecutions_Click 4-101
cmdReqHistoricalData_Click 3-54
cmdRegMktData_Click 3-40, 3-41
cmdRegMktDepth_Click 3-48
cmdRegNews_Click 5-108
cmdRegOpenOrders_Click 4-97
cmdRegRealTimeBars_Click 3-60
cmdRequestParameters_click 3-66
cmdScanner_Click 3-66
cmdServerLoglevel_Click 5-111
cmdSubscribe_click 3-66
Combination Order Legs dialog 4-83
combo legs code sample 4-85
combo orders 4-82, 4-83, 4-84, 4-85
combo legs processing 4-84
Connect button 3-35
Connect button event handler 3-37
connecting the sample application to TWS 3-34
connecting to the sample application 2-28
connecting to TWS 3-34, 3-35, 3-37
Connection Parameters dialog 3-35
connectionClosed() 3-38
connectionClosed() Event Handler 3-38
contract data 3-70, 3-71, 3-72
contract details 3-70
contract details results 3-71
contract object 3-43, 3-49
contractDetailsEnd() 3-73
contractDetailsEx() 3-72
createComboleglList() 4-84
createContract() 3-44, 3-49, 3-72, 4-92
createExecutionFilter() 4-101
createOrder() 4-97

127

Index

createScannerSubscription() 3-67
createTagValueList() 4-89

current time 5-104, 5-105

Current Time button event handler 5-104
current time results 5-104

currentTime() 5-105

customer forums 6-117

customer service 6-117

D
Disconnect button 3-38
disconnect() 3-38
disconnecting from TWS 3-38
dlgMainWnd 3-35
dlgOrder object

states of 3-41
document conventions -11
downloading API software 2-24

E

events

historical data 3-56

market data 3-44

market depth 3-50

real time bars 3-62
execDetailEnd() 4-102
execDetails() 4-102
execDetails() parameters 4-102
Execution Report Filter dialog 4-100
executions 4-75,4-100
Exercise Options button 4-91
Exercise Options button event handler 4-91
Exercise Options dialog 4-90
exerciseOptionsEx() 4-92
exerciseOptionsEx() parameters 4-92
exercising options 4-90
Extended button 4-94
extended order attributes 4-93, 4-94
Extended Order Attributes dialog 4-93
externded order attributes A-119

F

Features Poll 6-117
footnotes and references -9
framework of sample application 3-34

H

historical data 3-53, 3-54, 3-55, 3-56, 3-57
Historical Data button 3-54

Historical Data button event handler 3-54
historical data events 3-56

historicalData event handler 3-57
historicalData() 3-56

historicalData() parameters 3-56

how to use this book -8

I
IB bulletin boards 6-117

Getting Started wtih the TWS ActiveX API for Advisors

IB Customer Service 6-117
IBAlgo orders 4-87
IComboleg 4-84
IComboleglist 4-84

icons used in this book -10
IDE, installing 2-22
installing API software 2-27
integrated development environment 2-22
introduction -7

ITagValue 4-89
ITagValueList 4-89

L

Log Configuration button event handler 5-111
Log Configuration dialog 5-110, 5-111

log.txt file 5-110

logLevel 5-111

M

m_orderInfo 4-89
market data 3-33, 3-39, 3-40, 3-41, 3-42, 3-44
canceling 3-45
snapshot 3-45
market data events 3-44
market data results 3-40
market depth 3-47, 3-48, 3-49, 3-50, 3-51
market depth events 3-50
Market Depth for dialog 3-48
market scan results 3-65
market scanner
subscribing to 3-67
Market Scanner button 3-65
Market Scanner button event handler 3-66
Market Scanner dialog 3-64
code in 3-66
market scanners 3-64, 3-65, 3-66, 3-67, 3-68, 3-69
mCombolegs 4-84
Microsoft Visual Basic 2008
languages supported 2-22
modifying orders 4-81
multiple API sessions 4-95

News Bulletin Subscrsciption dialog 5-107
news bulletins 5-107, 5-108, 5-109

(o)
open orders 4-95, 4-96, 4-97, 4-98, 4-99
different types 4-96
open orders results 4-96
openOrderEnd() 4-98
openOrderEx() 4-97,4-98
options 4-90, 4-91, 4-92
orders 4-75, 4-76, 4-77, 4-80
Algo 4-87
combo orders 4-82
modifying 4-81
what-if 4-81

128

Index

organization of this book -8 reqScannerSubscriptionEx() 3-67
reqScannerSubscriptionEx() parameters 3-67
P Request All Open Orders 4-96
Place Order button 4-77 Request Auto Open Orders 4-96
Place Order dialog 4-76 Request Contract Details dialog 3-70
Algo Params button 4-87 Request Historical Data dialog 3-53
Combo Legs button 4-82 Request Market Data dialog 3-39
placing Algo orders 4-87 Request Market Depth dialog 3-47
placing combination orders 4-82 Request Open Orders 4-96
placing orders 4-76 Request Real Time Bars dialog 3-59
populateSubscription() 3-66 requesting contract data 3-70
preparing to use the ActiveX API 2-21 requesting current time 5-104
requesting executions 4-100, 4-101, 4-102
R requesting historical data 3-53
real time bars 3-59, 3-60, 3-61, 3-62 requesting market data 3-39, 3-40

Real Time Bars button event handler 3-60 requesting market depth 3-47

real time bars events 3-62 requesting open orders 4-95

real-time account monitoring, in TWS 1-17 requesting real time bars 3-59
realtimeBar() 3-62 requesting scanner parameters 3-65, 3-67

realtimeBar() event handler 3-62 resources, for VB programming help 6-116

realTimeBar() parameters 3-62

reasons for using an API 1-18 S

registering ActiveX controls 2-27 sample application

registering third-party ActiveX controls 6-115 connecting to 2-28

Req All Open Orders button 4-98 sample application framework 3-34
Req All Open Orders button event handler 4-98 Sample dialog

Req Auto Open Orders button 4-99 market data fields 3-43

Req Auto Open Orders button event handler 4-99 scanner parameters

Req Contract Data button 3-71 requesting 3-67

Req Contract Data button event handler 3-71 scannerDataEnd() 3-68

Req Current Time button 5-104 scannerDataEnd() event handler 3-69
Req Executions button 4-100 scannerDataEx() 3-68

Req Executions button event handler 4-101 scannerDataEx() event handler 3-68
Req Mkdt Depth button 3-48 scannerParameters() 3-67

Req Mkt Data button 3-40 scannerSubscriptionEx() 3-66

Req Mkt Data button event handler 3-40 server log levels 5-111

Req Mkt Depth button event handler 3-48 Server Logging button 5-110

Req News Bulletins button 5-107 server logging level 5-110, 5-111

Req News Bulletins button event handler 5-108 server time 5-104

Req Open Orders button 4-96 setServerLoglLevel() 5-111

Req Open Orders button event handler 4-97 snapshot 3-45

Req Real Time Bars button 3-60 subscribing to market scanner subscriptions 3-64
regAllOpenOrders() 4-98 subscribing to news bulletins 5-107
reqAutoOpenOrders() 4-99 subscription object 3-67
reqContractDetailsEx() 3-72

reqCurrentTime() 5-105 T

reqExecutionsEx() 4-101 third-party controls, for ActiveX 6-115
reqFundamentalData() 3-55 tickEFP() 3-44

reqHistoricalDataEx() 3-55 tickGeneric() 3-44
reqHistoricalDataEx() parameters 3-55 tickOptionComputation() 3-44
reqMktDataEx() 3-42 tickPrice() 3-44

reqMktDataEx() parameters 3-42 tickSize() 3-44

reqMktDepthEx() 3-49 tickString() 3-44

reqMktDepthEx() parameters 3-49 Trader Workstation
reqNewsBulletins() 5-108 overview 1-14

reqOpenOrders() 4-97 trading window 1-16
reqgRealTimeBarsEx() 3-61 TWS

reqRealTimeBarsEx() parameters 3-61 available API technologies 1-19
reqScannerParameters() 3-67 real-time account monitoring in 1-17

Getting Started wtih the TWS ActiveX API for Advisors 129

Index

TWS and the API 1-18 \Y/
TWS Order Ticket 1-16

VB programming help 6-116
TWS overview 1-14, 1-16 prog J P

VB sample application 2-28

TWS Quote Monitor 1-16 VB.NET 2-22
connecting to the sample application using 2-29
U VB.NET sample application 2-28
updateMktDepth Event Handler 3-50 viewing the server logging level 5-110
updateMktDepth() 3-50 Visual Basic and VB.NET 2-28
updateMktDepth() parameters 3-50
updateMktDepthL2 event handler 3-51 W
updateMktDepthL2() 3-51 What If button 4-81
updateMktDepthL2() parameters 3-51 what-if data 4-81

updateNewsBulletin() 5-109
updateNewsBulletin() parameters 5-109
using this book -8 X
document conventions -11
icons -10
organization -8

whatlIf() parameter 4-81

xml parameter, in scannerParameters() event 3-67

Getting Started wtih the TWS ActiveX API for Advisors 130

	Introduction
	How to Use this Book
	Organization
	Part 1: Introducing the TWS ActiveX API
	Part 2: Preparing to Use the TWS ActiveX API
	Part 3: Market Data
	Part 4: Orders and Executions
	Part 5: Additional Tasks
	Part 6: Where to Go from Here

	Footnotes and References
	Icons
	Document Conventions

	TWS and the ActiveX API
	Chapter 1 - What is Trader Workstation?
	What Can You Do with TWS?
	A Quick Look at TWS
	The TWS Quote Monitor
	The Order Ticket
	Real-Time Account Monitoring

	Chapter 2 - Why Use the TWS ActiveX API?
	TWS and the API
	Available API Technologies
	An Example

	Preparing to Use the ActiveX API
	Chapter 3 - Install an IDE
	Programming Languages, ActiveX and Microsoft Visual Studio 2008

	Chapter 4 - Download the API Software
	Chapter 5 - Connect to the ActiveX Sample Application
	Multiple Versions of the Sample Application
	Connecting to the VB.NET Sample Application from Visual Studio 2008
	What’s Next

	Market Data
	Chapter 6 - Connecting to TWS
	ActiveX Sample Application Basic Framework
	dlgMainWnd

	What Happens When I Click the Connect Button?
	Connect Button Event Handler

	Disconnecting from a Running Instance of TWS

	Chapter 7: Requesting and Canceling Market Data
	What Happens When I Click the Req Mkt Data Button?
	Req Mkt Data Button Event Handler
	States of the dlgOrder Object
	The reqMktDataEx() Method
	ActiveX Events that Return Market Data

	Getting a Snapshot of Market Data
	Canceling Market Data
	The cancelMktData() Method

	Chapter 8 - Requesting and Canceling Market Depth
	What Happens When I Click the Req Mkt Depth Button?
	Req Mkt Depth Button Event Handler
	The reqMktDepthEx() Method
	ActiveX Events that Return Market Depth

	Canceling Market Depth
	The cancelMktDepth() Method

	Chapter 9 - Requesting and Canceling Historical Data
	What Happens When I Click the Historical Data Button?
	Historical Data Button Event Handler
	The reqHistoricalDataEx() Method
	ActiveX Events that Return Historical Data

	Canceling Historical Data
	The cancelHistoricalData() Method

	Chapter 10 - Requesting and Canceling Real Time Bars
	What Happens When I Click the Real Time Bars Button?
	Real Time Bars Button Event Handler
	The reqRealTimeBarsEx() Method
	ActiveX Events that Return Real Time Bars

	Canceling Real Time Bars
	The cancelRealTimeBars() Method

	Chapter 11 - Subscribing to and Canceling Market Scanner Subscriptions
	What Happens When I Click the Market Scanner Button?
	Market Scanner Button Event Handler
	Requesting Scanner Parameters
	Subscribing to a Market Scanner
	The scannerDataEnd() Event

	Cancel a Market Scanner Subscription

	Chapter 12: Requesting Contract Data
	What Happens When I Click the Req Contract Data Button?
	Req Contract Data Button Event Handler
	The reqContractDetailsEx() Method
	The contractDetailsEx() Event
	The contractDetailsEnd() Event

	Orders and Executions
	Chapter 13: Placing and Canceling an Order
	What Happens When I Place an Order?
	Place Order Button Event Handler
	The placeOrderEx() Method
	The orderStatus() Event

	Canceling an Order
	The cancelOrder() Method

	Modifying an Order
	Requesting "What-If" Data before You Place an Order
	Placing Combo Orders
	Combo Legs Processing
	Combo Legs Code Example

	Placing Algo Orders
	Algo Order Processing

	Chapter 14: Exercising Options
	What Happens When I Click the Exercise Options Button?
	Exercise Options Button Event Handler
	The exerciseOptionsEx() Method

	Chapter 15: Extended Order Attributes
	What Happens When I Click the Extended Button?

	Chapter 16: Requesting Open Orders
	Running Multiple API Sessions
	The Difference between the Three Request Open Orders Buttons
	What Happens When I Click the Req Open Orders Button?
	Req Open Orders Button Event Handler
	The openOrderEx() Event
	The openOrderEnd() Event

	What Happens When I Click the Req All Open Orders Button?
	Req All Open Orders Button Event Handler

	What Happens When I Click the Req Auto Open Orders Button?
	Req Auto Open Orders Button Event Handler
	The reqAutoOpenOrders() Method

	Chapter 17: Requesting Executions
	What Happens When I Click the Req Executions Button?
	Req Executions Button Event Handler
	The reqExecutionsEx() Method
	The execDetails() Method
	The execDetailEnd() Event

	Additional Tasks
	Chapter 18 - Requesting the Current Time
	What Happens When I Click the Current Time Button?
	Current Time Button Event Handler
	The reqCurrentTime() Method
	The currentTime() Event Handler

	Chapter 19: Requesting the Next Order ID
	The reqIds() Method
	The nextValidId() Event

	Chapter 20: Subscribing to News Bulletins
	What Happens When I Click the Req News Bulletins Button?
	Req News Bulletins Button Event Handler
	The reqNewsBulletins() method
	The updateNewsBulletin() Method

	Canceling News Bulletins

	Chapter 21: Viewing and Changing the Server Logging Level
	What Happens When I Click the Log Configuration Button?
	Log Configuration Button Event Handler
	The setServerLogLevel() Method

	Where to Go from Here
	Chapter 22 - Linking to TWS using the TWS ActiveX API
	Registering Third-Party ActiveX Controls

	Chapter 23 - Additional Resources
	Help with Visual Basic and VB.NET Programming
	Help with the TWS ActiveX API
	The API Reference Guide
	The API Beta and API Production Release Notes
	The TWS API Webinars
	API Customer Forums
	IB Customer Service
	IB Features Poll

	Appendix A - Extended Order Attributes
	Appendix B - Account Page Values

